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1. Introduction

The transition metal element Cu consists of two stable isotopes, **Cu
and ®°Cu, and is an important element for studying reduction-oxidation
(redox) interactions and metal cycling in the lithosphere, atmosphere, hy-
drosphere, biosphere, and anthroposphere (Fig. 1) (Moynier et al., 2017).
Copper takes part in important redox reactions in the environment, shifting
between Cut and Cu?", and as an essential trace element in most aerobic
organisms, Cu is a useful tool for studying biological processes and metal
dispersion in the environment (Kim et al., 2008; Uauy et al., 1998;
Yruela, 2005).

The direction and intensity of changes in the abundance of Cu in a par-
ticular material or fluid cannot be quantitatively predicted (Télouk et al.,
2015). However, this limitation can be overcome by the study of isotope
fractionation between coexisting molecules, which can be quantitatively
predicted by ab initio calculations (Fujii et al., 2013, 2014; Liu et al.,
2021; Seo et al., 2007; Sherman, 2013; Sherman and Little, 2020;
Tennant et al., 2017). The term “isotope fractionation” refers to the relative
partitioning of the “heavy” (°°Cu) and “light” (°3cu) isotope between two
coexisting phases in a system. Because natural variations in the ratio (R),
55Cu/%%Cu, are small, data are reported in 8°*Cu notation, which denotes
the parts per thousand or “permille” (%o) change in the ®*Cu/**Cu value
of a sample relative to a Cu isotopic reference material used as a standard
(Std; Eq. (1)).

RO5/6
5% Cugy — (1“;’2{: . 1) - 1000 N
RSld

Molecules containing the heavier isotope(s) of an element vibrate more
slowly than the lighter forms, and because bond energy is inversely propor-
tional to vibrational frequencies, heavy isotopes tend to preferentially oc-
cupy the lowermost energy levels (Albaréde, 2015). In general, the

strength of a particular bond is expected to be higher where the element
is in a higher oxidation state (Cu?™"), where bond energy is split between
fewer partners (lower coordination number), and when Cu is bound to
more electronegative ligands (Albaréde, 2015; Bigeleisen and Mayer,
1947).

Interest in high-precision Cu isotopic analysis has increased significantly
over the last 20 years, translating into a large body of research spanning nu-
merous fields (Bishop et al., 2012; Jaouen et al., 2013b; Mahan et al., 2020;
Maréchal and Albaréde, 2002; Maréchal et al., 1999; Moynier et al., 2017;
Vanhaecke and Costas-Rodriguez, 2021; Wang et al, 2017, 2021;
Wiederhold, 2015). Despite this, Cu has remained a relatively underused
isotopic system in mineral exploration, environmental, and medical fields.

Recent research has demonstrated that the Cu isotope ratio can serve as
a tracer of anthropogenic Cu contamination in surface and aquatic environ-
ments. Anthropogenic materials, such as cement, road dust, motor vehicle
products, antifouling paint, Cu pesticides, flotation tailings, slag, urban
aerosols, and particles originating from smelting and flue gas cleaning pro-
cesses (Aratjo et al., 2021b; Babesényi et al., 2016; Blotevogel et al., 2018;
Briant, 2014; Dong et al., 2017; El Azzi et al., 2013; Gelly et al., 2019;
Gonzalez et al., 2016; Kiibek et al., 2018; Schleicher et al., 2020; Souto-
Oliveira et al., 2018, 2019; Takano et al., 2020) are generally characterized
by higher §°°Cu values than those typical for geological materials (Aratjo
etal., 2019b; Liu et al., 2015; Savage et al., 2015; Wang et al., 2017).

Much opportunity also remains for the use of the Cu isotope ratio in
groundwater as a mineral exploration vector. Recent research has shown
relatively large surface and groundwater §°°Cu dispersion haloes around
mineral deposits that lack surface expression and cannot be revealed with
Cu concentrations (Kidder et al., 2021, 2022; Mathur et al., 2013, 2014;
Su et al., 2018). Much in the same way that the oxidative dissolution of
Cu sulfide minerals can lead to Cu isotope fractionation in groundwater,
the disruption of Cu homeostasis associated with many diseases (Brewer,
2003) can cause Cu isotope fractionation in blood compartments (Mahan
et al., 2020; Vanhaecke and Costas-Rodriguez, 2021). In this newly-
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Fig. 1. Summary of the influence of natural and anthropogenic processes on the distribution of Cu stable isotopes in the environment. Data for/from: smelter-related material
(Briant, 2014; Gelly et al., 2019; Kiibek et al., 2018; Souto-Oliveira et al., 2018); atmospheric samples (Sillerova et al., 2017; Takano et al., 2014, 2021); soils (Babcsédnyi et al.,
2016; Blotevogel et al., 2018; Chen et al., 2008; El Azzi et al., 2013; Fekiacova et al., 2015; Petit et al., 2013); mouse (Balter et al., 2013); urban aerosols (Schleicher et al.,
2020); cement (Souto-Oliveira et al., 2018, 2019); road-deposited sediments (Jeong and Ra, 2021); tree cores and grasses (Kiibek et al., 2018; Mihaljevi¢ et al., 2018);
potentially polluted marine aerosols (Takano et al., 2020); seawater (Little et al., 2018); river waters (Vance et al., 2008); suspended particulate matter in aquatic environments
(Wang et al., 2017); estuary sediments (Aratjo et al., 2019b); upper continental crust (Liu et al., 2015; Savage et al., 2015); mine drainage (Masbou et al., 2020); hydrothermal
porphyry Cu deposits (Braxton and Mathur, 2011; Graham et al., 2004; Li et al., 2010; Mathur et al., 2009, 2010, 2012, 2013; Mirnejad et al., 2010; Palacios et al., 2011;

Wuetal., 2017).

named field of research, isotope metallomics, stable metal isotope tech-
niques are applied to biomedicine, and the Cu isotope ratio has already
been identified as a marker of multiple cancers and other diseases
(Mahan et al., 2020; Vanhaecke and Costas-Rodriguez, 2021).

In this contribution, we review recent advances in Cu isotopic anal-
ysis with regards to (1) chromatographic isolation of Cu - particularly
for samples with ultra-trace Cu concentrations, (2) analytical methods
for Cu isotope ratio determination, (3) matrix reference materials,
(4) processes that fractionate Cu isotopes, (5) hydrogeochemical min-
eral exploration, (6) tracing anthropogenic sources of Cu, and (7) iso-
tope metallomics.

2. Copper isotopic analysis
2.1. Instrumentation

Measurements of the Cu isotope ratio were first performed using ther-
mal ionization mass spectrometry (TIMS) (Shields et al., 1965; Walker
et al., 1958). The advent of multi-collector inductively coupled plasma
mass spectrometry (MC-ICP-MS) has improved the ability to process larger
numbers of samples, but the instrumentation suffers from larger potential
mass bias (preferential transmission of higher mass isotopes to the detec-
tors), which requires correction (Archer and Vance, 2004; Maréchal et al.,
1999; Yang et al., 2018; Zhu et al., 2000).

An MC-ICP-MS unit consists of an ICP ion source, mass analyzer, and an
array of detectors. Although a relatively simple system, there are multiple
potential sources of inaccuracy, including contamination, a low signal-to-
noise ratio, temporal isotope fractionation drift, and isotope fractiona-
tion/mass bias during measurement (Yang et al., 2018). The causes of iso-
tope fractionation/mass bias (or instrumental mass discrimination) during
measurement are not fully understood, but are thought to occur from the
supersonic expansion of the extracted ion cloud once it has passed through
the sampler cone orifice, and from space-charge effects in and behind the
skimmer cone region, both of which favour the transmission of the heavier
isotope into the mass spectrometer (Yang et al., 2018). Desolvating inter-
face sample introduction systems coupled to MC-ICP-MS may be used to
perform measurements in dry plasma mode at a low flow rate with much-
improved signal sensitivity, but there have been reports of measurement in-
accuracy associated with the use of certain systems (Supplementary Infor-
mation).

There has been limited utilization of laser ablation (LA)-MC-ICP-MS to
determine the Cu isotope ratio in low-Cu samples. Two exceptions to this
demonstrated the determination of the Cu isotope ratio in samples with
complex matrices: directly in dried urine spots, and in dried spots of the so-
lution obtained from the pre-treatment of serum by digestion and subse-
quent chromatographic isolation of Cu (Garcfa-Poyo et al., 2021; Resano
et al., 2013). Potential Cu isotopic reference materials for LA-MC-ICP-MS
were characterized by Yang et al. (2021).
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2.2. Chromatographic Cu isolation

High-precision measurement of the Cu isotope ratio requires isolation
of the target element with high yield (minimize the effect of on-column
isotope fractionation, Supplementary Information) and analyte purity due
to the effect of concomitant species on the extent of mass bias and the
potential occurrence of spectral overlap caused by polyatomic ions (Hou
etal., 2016; Liu et al., 2014; Maréchal et al., 1999; Yang et al., 2018). Of par-
ticular importance is the elimination of Na and Ti, which are the primary ma-
trix components that need to be removed completely as they can produce
polyatomic ions that interfere with the monitoring of the signals of ®*Cu
and ®°Cu, including “°Ar **Na*, ?®Naj®0'H, **Naj®0'H*, VTi'°0",
“*Ti'®0'H ", **Ti'®0", and **Ti'°0'H" (Hou et al., 2016). Therefore, Ti
and Na levels in the Cu isolate should be determined by (single-collector)
ICP-MS to determine Ti/Cu and Na/Cu values and ensure they are below ap-
proximately 0.3 and 0.5, respectively (Hou et al., 2016; Liu et al., 2014). Even
the presence of elements that do not cause prominent spectral interferences
with the signals of ®*Cu and ®*Cu can affect the raw MC-ICP-MS Cu isotope
ratio data. For example, the effect of Co on 8°°Cu is significant when the
Co-to-Cu ratio reaches 1 (Hou et al., 2016). Copper isotopic analysis without
prior purification is possible in samples with very simple matrix compositions
or in media with high Cu concentrations, such as Cu sulfide, sulfate, and
oxide minerals (Balliana et al., 2013; Larson et al., 2003; Mathur et al.,
2005, 2009; Zhang et al., 2020; Zhu et al., 2000). Chromatographic isolation
of Cu can also be avoided when bracketing standards of known Cu isotopic
composition are perfectly matrix-matched with samples (Hou et al., 2016).

The most significant development in Cu chromatography (and which most
methods are based upon) came from Maréchal et al. (1999), who used the
AG® MP-1 resin and 7 M HCI with 0.001% H30, to achieve high-purity Cu
elutions. Further adaptions were needed for isolating Cu from fresh waters
and those with high-salinity matrices, such as seawater (Bermin et al., 2006;
Wang et al., 2020a; Yang et al., 2020). These methods employed the use of
Cu-specific resins, Bio-Rad Chelex 100 (Bermin et al., 2006; Vance et al.,
2008) and Nobias-PA1 (Little et al., 2018; Takano et al., 2013, 2017, 2020,
2021; Yang et al., 2020), to preconcentrate Cu prior to the purification step.
However, these two resins require the sample pH to be adjusted to within a
narrow range in order to quantitatively retain Cu on the column. Wang et al.
(2020a) used CU resin (Eichrom Technologies Inc.), which quantitatively re-
tains Cu over a wide pH range (about pH 4 to 9) to purify Cu from seawater.
Given that most seawater has a pH of ~8, pH adjustment is not necessary. Ni-
trilotriacetic acid resin (NTA Superflow®) has also been employed for the
preconcentration stage, with a peristatic pump to speed up the purification
process (Baconnais et al., 2019). Additional innovations to Cu chromatogra-
phy are discussed in the Supplementary Information.

Perhaps the biggest barrier to mainstream application of the Cu isotope
ratio is the time required for sample preparation (namely, the isolation of
Cu), which can potentially be reduced through the simplification of the
Cu purification process and automation. To that end, automated ion-
exchange chromatography systems, such as the prepFast-MC (ESI) and
the Chemcob 11 (Analab), were developed. There are multiple benefits to
these systems for separating low amounts of Cu (~100 ng) from compli-
cated matrices (e.g., human serum and brines), with the removal of
human operators from the method and procedures taking place in an
enclosed and HEPA-filtered environment reducing the risk of sample con-
tamination during ion-exchange chromatography. Other improvements in-
clude the high reproducibility of flow rates, sample and reagent volumes,
and wash times. Such automated methods have been successfully devel-
oped for Cu and several other isotope systems, including Sr, Nd, Pb, and
Ca (Enge et al., 2016; Kidder et al., 2020; Meynadier et al., 2006;
Retzmann et al., 2017; Romaniello et al., 2015; Schmitt et al., 2009).

2.3. Correction for mass bias using sample-standard bracketing with internal nor-
malization

An external standard with known Cu isotopic composition measured in a
sample-standard bracketing (SSB) approach is commonly used to correct not
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only for mass bias, but also for instrumental drift during measurement, as it
is based on sequential measurements of standard-sample-standard. The SSB
correction is performed by calculating §°°Cu using the raw (uncorrected)
isotope ratio of the sample solution, the mean raw (uncorrected) isotope
ratio of the bracketing standard measured immediately before and after
the sample in the measurement sequence (Eq. (1)), and the known isotope
ratio of the standard. As the corrected isotope ratio can show dependence
on concentration, it is necessary to match the Cu concentration in the sample
and the bracketing standard to within 10% to ensure accurate isotope ratio
measurements (Liu et al., 2014; Petit et al., 2008; Yang et al., 2018). By con-
vention, 8°°Cu values are reported relative to National Institute of Standards
and Technology (NIST) Standard Reference Material (SRM) 976, but other
isotopic reference materials are available (Supplementary Information).
Temporal, and to some extent, matrix-induced drifts in instrumental iso-
tope fractionation are unable to be fully corrected for using an external cor-
rection in an SSB approach, but this can be overcome with the use of
another element as an internal standard (Yang et al., 2018). A combination
of external correction and internal normalization (C-SSBIN) mass bias cor-
rection using Ga as an internal standard is the preferred method to correct
for instrumental mass bias for Cu, as it corrects for temporal drifts and pro-
vides a better measurement uncertainty than SSB alone (Hou et al., 2016;
Yang et al., 2018). Other calibrants, such as Zn (Maréchal et al., 1999) or
Ni (Ehrlich et al., 2004), can be used, but Ga isotopes have no isobaric
interferents and less polyatomic interferents (Hou et al., 2016). Gallium is
also less abundant than Zn and Ni in the Earth's crust and therefore has
fewer sources of contamination. As with the analyte, Cu, Ga concentrations
in the sample and the bracketing standard must also be matched to within
10% to minimize the effect of concentration dependence on corrected iso-
tope ratios (Liu et al., 2014; Yang et al., 2018). Significant instrumental
drift effects during Cu isotopic analysis by LA-MC-ICP-MS cannot be
corrected with SSB alone (Yang et al., 2021). The C-SSBIN mass bias correc-
tion method can also be employed during LA-MC-ICP-MS by admixing a
“semi-dry” aerosol of Zn, generated by an Aridus II"™ desolvating nebuliza-
tion system (CETAC, Omaha, United States) to the ablation aerosol (Yang
etal., 2021). The calculation of the mass bias-corrected sample **Cu/%*Cu
value is described in Sullivan et al. (2020a). The value obtained for the in-
ternal standard isotope ratio may be biased due to the limitations of the iso-
tope fractionation correction model (e.g., fc, = fga), but this is largely
negated in the second step of the calibration from Ga — Cu (Yang et al.,
2018). The relationship between the mass bias correction factors, fc, and
fa, 18 taken into account in the correction model of Baxter et al. (2006).

3. Quality assurance and quality control
3.1. Sources of metal contamination

Laboratory materials, such as gloves and bottles, have been investigated
as a source of Cu contamination (Duangthong et al., 2017; Friel et al., 1996;
Gasparon, 1998), but significant metal contamination can also occur during
sample collection. For example, blood collection tubes (BCTs) for separat-
ing serum/plasma from whole blood typically contain additives, such as
citrate, silica gel, Na heparin, or dipotassium ethylenediaminetetraacetic
acid (K,EDTA), and are not prepared with the aim of trace element or
isotopic analysis. However, BCTs specifically prepared for trace element
analysis are commercially available. The potential problem lies in the fact
that biobanks are valuable sources of blood samples for research, but sam-
ples are often derived from studies with different objectives that did not
take into consideration potential trace metal contamination. An investiga-
tion of trace metal contamination present in different BCTs would provide
valuable information on which tubes are suitable to study which elements.

3.2. Matrix reference materials
The ideal matrix reference material is characterized by a similar miner-

alogy, organic matter content, and abundances of major, minor, and trace
elements to those found in the sample material to be analyzed. In some
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cases, isotopic studies put pure, single-element standards alongside samples
though separation methods, but this is inadequate to fully validate §°*Cu
measurements in samples as it only serves as a monitor of Cu yield from
ion-exchange resins and contamination (Mathur et al., 2013). The process-
ing of well-characterized, suitably matrix-matched RMs alongside real sam-
ples prior to isotopic analysis ensures that acid digestion and column
chromatography procedures are adequate for the material type being inves-
tigated and flags occurring problems.

Despite the tracing of natural and anthropogenic Cu sources in soil being
the subject of numerous studies (discussed later), well-characterized soil ref-
erence materials are noticeably lacking, and basalt reference materials have
typically been used instead (Kfibek et al., 2018; Mihaljevic et al., 2018,
2019). However, this is inadequate due to the comparatively lower Cu con-
centrations and high organic content of soils which complicates their diges-
tion and Cu purification. There is also a paucity of Cu isotope ratio data
available for aqueous reference materials, and this must be improved for
the full potential of hydrogeochemical applications of Cu isotopic analysis
to be unlocked. The catalog of biological reference materials characterized
for §°°Cu is improving, with several recent articles focusing on their measure-
ment (Jeong et al., 2021; Sauzéat et al., 2021; Sullivan et al., 2020a). The
Sauzéat et al. (2021) interlaboratory comparison was an important step
for the isotope metallomics community and increased the number of biolog-
ical reference materials characterized for 8°°Cu. The success of this
interlaboratory comparison should inspire further comparisons, which will
be helpful for those studying the isotopic fractionation of Cu (and other ele-
ments) in different settings.

To the best of our knowledge, we have prepared the largest compilation
of published §°°Cu values for matrix reference materials (Supplementary
Information, Table S1). The unweighted mean value of the means from
each cited article is provided as the best estimate of 8°*Cu for each of the
28 (15 geological, 9 biological, and 4 aqueous) reference materials
(Table 1). These reference materials also cover much of the variability of
8°°Cu in “natural” Earth surface materials, ranging from —0.25%o (BCR-
414, plankton) to 0.67%o (SRM 1573a, tomato leaves) (Fig. 2). We do not
provide an exhaustive list of reference materials characterized for §°°Cu,
but instead focus on materials that have been analyzed by multiple labora-
tories over many years. We also provide data for reference materials with
matrix types that are seeing increased attention in literature (soil, biologi-
cal, and aqueous) but require further analyses.

3.3. Uncertainty estimation

Until recently, the precision of a sample measurement has com-
monly been reported as two standard deviations of repeated observa-
tions (from either the bracketing standard or a sample solution).
However, the calculation of the combined uncertainty accompanying
a determined §°°Cu value accounts for the uncertainties of both the
sample and bracketing standard isotope ratios and is quickly becoming
the norm. The combined uncertainty associated with 8°°Cu measure-
ments should be estimated in accordance with JCGM 2008 “Guide to
the Expression of Uncertainty in Measurement”, using the law of propa-
gation of uncertainty. A full demonstration of the calculation of the
combined uncertainty of §%°Cu is provided by Sullivan et al. (2020a).
Sullivan et al. (2020a) and Sauzéat et al. (2021) achieved comparable
mean expanded uncertainties of +=0.07%o and +0.05%0 (U, k = 2),
respectively, for measurements performed on a range of geological
and biological reference materials.

4. Copper isotope fractionation mechanisms

A number of Cu isotope fractionation mechanisms play a role in the dis-
tribution of the Cu isotopes in the natural Earth surface environment, in-
cluding reduction-oxidation reactions, adsorption onto mineral surfaces
and organic complexation, and biologically-mediated reactions. Moynier
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Table 1

The 8°°Cugpy o76 values of matrix reference materials covering a wide range of ma-
trices. Full data provided in Supplementary Information, Table S1. 2SE = standard
error of reported means multiplied by two. Typical 2s (standard deviation multi-
plied by two) precision of 0.05%o reported by laboratories for §8°°Cu measurements.
* 2s of measurements provided due to values only being available from a single

study.

Reference material Type Studies = Recommended
(m 8% Clispm 976 (%0)
BCR-1/2 Columbia River basalt 26 0.19 = 0.02 2SE
BHVO-2 Hawaiian basalt 21 0.10 = 0.02 2SE
BIR-1/1a Icelandic basalt 16 0.02 = 0.02 2SE
AGV-1/2 Guano Valley andesite 12 0.06 = 0.03 2SE
GSP-2 Granodiorite 8 0.29 = 0.02 2SE
Nod-P-1 Mn nodule 8 0.37 = 0.07 2SE
Seronorm™ Trace Elements Human serum 7 —0.20 + 0.05 2SE
Serum L-1
MESS-3/4 Marine sediment 5 0.01 = 0.12 2SE
PACS-2/3 Marine sediment 5 0.03 = 0.08 2SE
DORM-4 Fish protein 5 0.53 = 0.08 2SE
TORT-2/3 Lobster 4 0.39 = 0.09 2SE
hepatopancreas
W-2a Diabase 4 0.09 = 0.04 2SE
BCR-414 Plankton 3 —0.25 = 0.06 2SE
SLRS-5 St Lawrence river 3 0.38 = 0.12 2SE
water
SRM 1566b Oyster tissue 3 0.26 = 0.04 2SE
SGR-1/1b Green River shale 2 0.33 = 0.08 2SE
ERM-CC141 Loam soil 2 0.51 = 0.45 2SE
DOLT-4/5 Dogfish liver 2 —0.11 = 0.17 2SE
ERM-CE278 Mussel tissue 2 0.22 = 0.11 2SE
SRM 2976 Mussel tissue 2 0.20 = 0.11 2SE
CASS-5 Near-shore seawater 2 0.46 = 0.01 2SE
NASS-6 Seawater 2 0.42 = 0.04 2SE
SRM 1573a Tomato leaves 2 0.67 = 0.07 2SE
GBW07443 (GSF-3) Paddy soil 1 —0.04 = 0.04 25
GBWO07425 (GSS-11) Liaohe Plain soil 1 —0.07 £ 0.052s
GBWO07427 (GSS-13) North China Plain soil 1 —0.06 = 0.04 2s
GBW07389 (GSS-33) Floodplain sediments 1 —0.02 £ 0.062s
Trace Metals 1 Seawater 1 —0.21 + 0.08 2s

etal. (2017) provided a comprehensive review of Cu stable isotope fractio-
nation mechanisms, which include equilibrium (isotope fractionation be-
tween substances in chemical equilibrium) and kinetic (isotope
fractionation from incomplete or unidirectional processes, e.g., microbial
uptake) isotope effects; these mechanisms and recent advances in our un-
derstanding of them will be discussed insofar as they are relevant to the
scope of this review. Figs. 3 and 4 provide a summary of the preference of
each of these mechanisms for ®*Cu or ®*Cu and visualize how these prefer-
ences manifest themselves in the environment.

4.1. Mineral dissolution and precipitation

The largest variations in the Cu isotope ratio typically occur during
phase changes associated with mineral dissolution and precipitation
(Moynier et al., 2017). These are facilitated by redox reactions, with Cu
shifting between the Cu™ and Cu®* oxidation states, providing potential
as a tracer of sources and processes (Moynier et al., 2017). The oxidation
of Cu sulfide minerals (chalcopyrite, bornite, and covellite) through inter-
action with natural waters produces large degrees of Cu isotope fractiona-
tion (up to 3.5%o), with the heavier isotope, ®*Cu, concentrated in the
aqueous Cu®" state (Asael et al., 2007; Fernandez and Borrok, 2009;
Haest et al., 2009; Kimball et al., 2009; Mathur et al., 2005). In the dis-
solved phase of natural waters, the dominant form of Cu®>" binding is in
strong, organic inner sphere complexes that are enriched in ®°Cu
(Moynier et al., 2017).

A large degree of Cu isotope fractionation accompanies the reduction of
Cu®" to Cu"* (Ehrlich et al., 2004; Qi et al., 2019). For example, a fractio-
nation factor of 3.06 = 0.14%o0 (AGSCUCU(H]aq _ Ccus — SSSCHCU(H)MI -
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Fig. 2. Visualization of reference material §%°Cuisrm o76 values (bars represent standard error of reported means multiplied by two (2SE) of 8°Cu values from each study). * 2s

of measurements provided due to values only being available from a single study.
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Fig. 3. Summary of the ®*Cu isotope enrichment/depletion patterns resulting from different Cu isotope fractionation mechanisms. Data for/from: organic complexation
(Bigalke et al., 2010c; Ryan et al., 2014); adsorption onto ferrihydrite (Balistrieri et al., 2008); adsorption onto gibbsite (Pokrovsky et al., 2008); adsorption onto goethite
(Pokrovsky et al., 2008); oxidative dissolution (Asael et al., 2007; Fernandez and Borrok, 2009; Haest et al., 2009; Kimball et al., 2009; Mathur et al., 2005); reductive
precipitation (Ehrlich et al., 2004; Pekala et al., 2011; Qi et al., 2019); adsorption onto kaolinite (Li et al., 2015); adsorption onto birnessite (Ijichi et al., 2018; Little et al.,
2014b; Sherman and Little, 2020); adsorption onto oxic soils (Vance et al., 2016); adsorption onto suspended particulate matter (SPM) (Vance et al., 2008; Wang et al., 2017);
plant uptake (Blotevogel et al., 2019, 2022; Jouvin et al., 2012; Li et al., 2016, 2020; Navarrete et al., 2011b; Ryan et al., 2013; Weinstein et al., 2011; Wiggenhauser
et al., 2022; Zheng et al., 2005; Zhu et al., 2010); microbial uptake (Mathur et al., 2005; Navarrete et al., 2011a; Pokrovsky et al., 2008; Zhu et al., 2002). Adapted after

Komarek et al. (2021) and Moynier et al. (2017).

85%5Cucys) is reported for the precipitation of covellite (Cu™*S) from the re-
duction of aqueous Cu®* during laboratory experiments (Ehrlich et al.,
2004). However, under special conditions, results can be yielded that con-
tradict this. For instance, during the initial stage of supergene alteration in
the Spence Cu-Mo porphyry system (Chile), the oxidation and leaching of
hypogene Cu sulfides by infiltrating meteoric water in a semi-arid climate
lead to the precipitation of secondary chalcocite at the redox front with

§%°Cu values ranging from 3.91 to 3.95%o, which represents fractionation
of ~3.6%o from the hypogene sulfides (Palacios et al., 2011).

The effects of temperature on the degree of Cu isotope fractionation in
reduction reactions have also been the subject of investigation. Qi et al.
(2019) reported a A®°Cu cyo) - curn OF — 2.66%o at 35 °C and —1.93%o at
80 °C, suggesting an inverse dependence of isotope fractionation on temper-
ature, but at 5 °C, mass transport (diffusion) appears to dominate over
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Fig. 4. Visualization of the ®°Cu isotope enrichment/depletion patterns resulting from different Cu isotope fractionation mechanisms in the environment. Data for/from:
organic acid complexation (Bigalke et al., 2010c; Ryan et al., 2014); adsorption onto ferrihydrite (Balistrieri et al., 2008); adsorption onto gibbsite (Pokrovsky et al., 2008);
adsorption onto goethite (Pokrovsky et al., 2008); oxidative dissolution (Asael et al., 2007; Fernandez and Borrok, 2009; Haest et al., 2009; Kimball et al., 2009; Mathur
et al., 2005); adsorption onto kaolinite (Li et al., 2015); adsorption onto birnessite (Ijichi et al., 2018; Little et al., 2014b; Sherman and Little, 2020); plant uptake (Blotevogel
et al., 2019, 2022; Jouvin et al., 2012; Li et al., 2016, 2020; Navarrete et al., 2011b; Ryan et al., 2013; Weinstein et al., 2011; Wiggenhauser et al., 2022; Zheng et al.,
2005; Zhu et al., 2010); microbial uptake (Mathur et al., 2005; Navarrete et al., 2011a; Pokrovsky et al., 2008; Zhu et al., 2002).

reaction kinetics, which results in a smaller degree of fractionation
(—1.219%o). Pekala et al. (2011) reported A**Cuggiution — Mineral Values rang-
ing from 1.97 to 3.23%o (average of 2.64%o) for the reaction of aqueous
Cu?" with Fe? " sulfide minerals (pyrrhotite and pyrite), and concluded
that significant fractionation is possible at moderate temperatures of 150
to 200 °C.

4.2. Adsorption

Trends for Cu isotope fractionation during adsorption are more nuanced.
At pH 4 to 6, ®>Cu is preferentially adsorbed onto the metal oxyhydroxide
minerals, gibbsite and goethite (Pokrovsky et al., 2008). Similarly, *>Cu
is also preferentially adsorbed onto the surface of amorphous Fe®*
oxyhydroxide phases (Balistrieri et al., 2008). This preference of ®*Cu during
adsorption onto metal oxyhydroxide minerals is most likely the result of a
change in bond length and coordination from six-fold coordination in solu-
tion to four-fold coordination when adsorbed (Pokrovsky et al., 2008).

Conversely, the light isotope, ®>Cu, is preferentially adsorbed onto the
surface of kaolinite (important Cu sink that is the second most abundant
clay mineral in marine sediments), the Mn oxide mineral birnessite (pri-
mary mineral phase adsorbing divalent trace metals in ocean Fe-Mn crusts),
suspended particulate matter (SPM), and oxic soil (Jjichi et al., 2018; Li
et al., 2015; Little et al., 2014b; Sherman and Little, 2020; Takano et al.,
2021; Vance et al., 2008, 2016). The mechanism behind the preferential ad-
sorption of ®*Cu onto SPM and oxic soils remains unclear, but was sug-
gested to be related to the binding of ®°Cu to strong organic ligands in the
aqueous phase (Vance et al., 2008, 2016). It is possible that the preferential
adsorption of ®*Cu onto SPM and oxic soils may also be related to

adsorption onto birnessite (Ijichi et al.,, 2018; Little et al.,, 2014b;
Sherman and Little, 2020) or clay minerals, such as kaolinite (Li et al.,
2015). Interestingly, it was originally hypothesized that the adsorption of
Cu onto birnessite should result in the enrichment of ®*Cu because of the
change in the coordination environment of Cu®>* and the shortening of
bond lengths between aqueous and adsorbed cu?t (Little et al., 2014a).
However, Cu adsorbed to the Fe-Mn oxide fraction of Fe-Mn crusts is
enriched in ®*Cu relative to seawater (A®°Cuge ym oxides - seawater = — 0.60
to —0.40%o) (Little et al., 2014b). Recent laboratory experiments also dem-
onstrated that ®*Cu is preferentially adsorbed onto birnessite (ljichi et al.,
2018), and this was confirmed computationally using ab initio calculations
(Sherman and Little, 2020).

Organic complexes play an important role in Cu binding in the organic
matter and aqueous phase of soils, with soil organic matter being observed
to preferentially adsorb ®*Cu (Bigalke et al., 2010a, 2010b, 2010c). This is
likely related to the preferential complexation of ®*Cu with humic acids,
which are an important component of humus, the major organic fraction
in soil (Bigalke et al., 2010c). Further, Ryan et al. (2014) showed that **Cu
is enriched over ®*Cu during complexation to a range of soluble organic li-
gands relative to inorganic aqueous species. Conversely, significant enrich-
ment of ®3Cu has been observed on the cell surface of the soil bacterium,
P. aureofaciens, at an ultra-acidic pH of between 1.8 and 3.5. However, at a
more typical soil pH of between 4 and 7, both reversible short-term adsorp-
tion and assimilation during cell growth produced isotopic shifts that were
comparable to the measurement uncertainty (Pokrovsky et al., 2008).

Compared to Zn, for which an abundance of data on isotope fractiona-
tion during adsorption is available (birnessite, pyrolusite, ferrihydrite, goe-
thite, hematite, gibbsite, corundum, y-Al;O3, quartz, amorphous SiO,,
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diatoms, bacteria, humic acids, kaolinite, calcite), little data is available for
the adsorption of Cu (Komaérek et al., 2021). This complicates the use of the
Cu ratio as a vector in mineral exploration and as a tracer of origin, trans-
port, and fate of metal contaminants in the environment. Along with kaolin-
ite, montmorillonite and illite are the most common clay minerals in soil
systems and play an important role in metal adsorption (Du et al., 1997).
Copper isotope fractionation during adsorption onto the surfaces of these
clay minerals should be investigated. Hematite, chlorite, vermiculite, and
quartz, should also be prioritized in decreasing order of their importance
to the adsorption of Cu in soils (Gonzalez-Costa et al., 2017) to enhance
our understanding of Cu isotope fractionation mechanisms in the natural
surface environment.

4.3. Biologically-mediated reactions

In biologically-mediated reactions where no equilibrium is established,
compounds containing the lighter isotope, ®*Cu, have lower activation en-
ergies, allowing them to react faster (Mathur et al., 2005; Pokrovsky
etal., 2008; Zhu et al., 2002). Zhu et al. (2002) identified that the incorpo-
ration of Cu in proteins (metallothioneins and SOD) from bacteria and yeast
cells results in the preferential uptake of **Cu, with the §°°Cu of cells being
as much as ~1.7%o lower than in the source solution. There is further Cu
isotope fractionation between different amino acids and proteins due to
the tendency of the heavier isotope, ®°Cu, to concentrate in compounds
when binding with more electronegative ligands (Albaréde et al., 2011;
Télouk et al., 2015). For example, Cu bound to histidine (Cu-N bonds), as
in superoxide dismutase (SOD) is expected to be more concentrated in
55Cu than in proteins in which Cu bound to the cysteine-rich protein, metal-
lothionein (Cu-S bonds) (Fujii et al., 2014; Larner et al., 2019; Télouk et al.,
2015). Together with oxidation state, ligand electronegativity plays a
prominent role in determining Cu isotope fractionation patterns in different
blood compartments, organs, and cell organelles (Albarede et al., 2017).

Bacterial reduction is also an important control and can result in a large
degree of Cu isotope fractionation. Navarrete et al. (2011a) found that lab
strains and natural consortia used to study Cu isotope fractionation during
intracellular incorporation preferentially incorporated ®*Cu with a A°*Cu
Solution — Solid Of 1.0 to 4.4%o. This was proposed to be a result of active cel-
lular transport and regulation, including the reduction of Cu®* to Cu", and
these potential fractionation mechanisms are likely also occurring in fungi,
plants, and higher organisms due to their shared intracellular structures
and mechanisms (Navarrete et al., 2011a).

Metals are primarily accumulated in plants through root and foliar up-
take (Shahid et al., 2017). Copper isotope fractionation during Cu uptake
has been documented by a number of groups (Blotevogel et al., 2019,
2022; Jouvin et al., 2012; Li et al., 2016, 2020; Navarrete et al., 2011b;
Ryan et al., 2013; Weinstein et al., 2011; Zheng et al., 2005; Zhu et al.,
2010), and a recent review summarizes stable isotope fractionation of
metals (including Cu) and metalloids in plants (Wiggenhauser et al.,
2022). Zheng et al. (2005) and (Li et al., 2016) propose the reduction of
Cu?* by FRO-type reductase at the soil solution-root interface as an impor-
tant Cu isotope fractionation mechanism during Cu uptake. From the soil
solution, Cu" is taken up into the plant and Cu® is adsorbed onto the root
surface (Li et al., 2016). This results in an overall enrichment of %3Cu in
the plant relative to soil and soil solution, although further isotope fractio-
nation occurs after uptake as Cu is distributed throughout plant organs and
tissues (Wiggenhauser et al., 2022). For instance, oxidation at the root-
xylem interface leads to the enrichment of ®*Cu in aboveground tissues
relative to root tissue (Li et al., 2016), although this appears to be species-
dependent (Wiggenhauser et al., 2022).

5. Exploration geochemistry
5.1. Copper isotope ratio variations related to ore deposits

Ore deposits are the most important source of Cu and metal production
globally accounts for the majority (~70%) of Cu emitted to the atmosphere
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(Rauch and Pacyna, 2009). As such, ore deposits have been the subject of a
large body of research undertaken on investigating Cu stable isotope frac-
tionation. This is due to the ability of the Cu isotope ratio to trace the origin
of Cu from the point of collection in the environment. Research has been
conducted on volcanogenic massive sulfide (VMS) deposits, including
Kalatag (Deng et al., 2019), Alexandrinka (Mason et al., 2005), Las Cruces
(Miguélez et al., 2019), the Pontides province in Turkey (Housh and Ciftci,
2008), and Japanese Besshi type deposits (Ikehata et al., 2011), skarn de-
posits (Larson et al., 2003; Su et al., 2018), and magmatic Ni-Cu deposits,
such as Arylakh in Noril'sk Province (Malitch et al., 2014), and Tulaergen
in China (Zhao et al., 2017). Limited work has also been undertaken on
sediment-hosted Cu deposits (Asael et al., 2007). However, by far the ma-
jority of work has focused on porphyry Cu deposits, which form very
large accumulations of disseminated Cu (Richards, 2021). The mineralogi-
cal composition of these deposits commonly makes the elements accumu-
lated within them amenable to remobilisation after formation, which can
produce economically significant accumulations of supergene Cu minerals.
In terms of mineral exploration, the main focus is on the use of 8°*Cu to de-
tect concealed ore deposits in areas of depleted Cu concentration (leached
or highly weathered) or post-mineral cover accumulation.

The upper exposed portions of porphyry deposits commonly undergo
weathering, oxidation, and element recycling, resulting in a classic super-
gene profile of leached cap, secondary Cu oxide, sulfate, and chloride min-
eralization, and supergene enriched Cu sulfide zone, all overlying hypogene
Cu sulfide mineralization (Sillitoe, 2010). In particular, the oxidation of pri-
mary sulfide minerals results in leaching (Kidder et al., 2021, 2022) and the
release of Cu, which migrates in aqueous solution and precipitates due to
reducing conditions below the water table (Boyle, 2003; Lichtner and
Biino, 1992). The precipitation of supergene minerals such as chalcocite
commonly forms a distinct zone or blanket, which is termed the supergene
sulfide enrichment zone (Reich et al., 2009). Finally, the original primary
sulfide minerals (unweathered) are referred to as the hypogene zone
(Reich et al., 2009).

The effectiveness of 8°°Cu values to differentiate these three horizons
has been demonstrated in a number of studies. Combined data reveal that
the §°°Cu values of hypogene minerals range from —2.56 to 7.24%o (me-
dian 0.18%o), supergene minerals range from —16.49 to 8.30%o (median
0.92%0), and leached cap/oxide minerals range from —14.64 to 9.98%o0
(median —0.60%o) (Braxton and Mathur, 2011; Graham et al., 2004; Li
etal., 2010; Mathur et al., 2009, 2010, 2012, 2013; Mirnejad et al., 2010;
Palacios et al., 2011; Wu et al., 2017). Large variations in Cu stable isotope
ratios (8°°Cu ranging from — 16.49 to 9.98%o) are reported in Mathur et al.
(2010), Mathur et al. (2009), and Mirnejad et al. (2010), but generally, the
range of 8°°Cu values for hypogene, supergene, and leached cap/oxide min-
erals is more limited. The §°°Cu values of primary sulfide minerals (chalco-
pyrite and bornite) typically range from — 0.1 to 0.5%o (Cooke et al., 2014).
Secondary ore zones from the Spence deposit (Chile) show significant de-
partures from the §%Cu of primary sulfide minerals (0.29 to 0.34%o),
with supergene chalcocite ranging from 3.91 to 3.95%0 and chrysocolla
ranging from 1.28 to 1.37%o (Palacios et al., 2011). Atacamite, which
formed last by interaction with hypersaline fluids, represents a significant
reversal with values ranging from —6.77 to —5.72%o (Palacios et al.,
2011). Braxton and Mathur (2011) identified a trend of decreasing §°°Cu
values from an enriched source zone (>3%o) at the Bayugo porphyry
(Philippines) to distal exotic mineralization (<1%o) and attributed it to
Rayleigh-type fractionation with repeated leaching and precipitation. Like
in other studies, mineralized zones at Bayugo are isotopically distinct,
with the §°°Cu value for the original primary hypogene mineralization
(—0.6 to 1.0%o) being much lower than those for the enriched secondary
mineralization in the supergene zone (2.23 to 2.56%o) and leached cap Fe
oxide minerals (1.8 to 2.7%o). At the Cafariaco Norte porphyry deposit
(Peru), §°°Cu values identify possible pre-existing supergene mineraliza-
tion or potential for an undiscovered zone of exotic mineralization laterally
away (Mathur et al., 2012). Iron oxide minerals from the leached cap dis-
play very low 8°°Cu values (—8.42 to — 2.29%o) compared to the average
8°°Cu values for hypogene mineralization of 0.18 + 0.32%o, and this is
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suggested to result from intense oxidative weathering (Mathur et al., 2012).
Li et al. (2010) demonstrated the use of §°°Cu values as an exploration vec-
toring tool, with the recognition of lateral zonation in the Northparkes (Cu-
Au) porphyry (Australia). Variability in excess of 1%o (ranging from —1.67
to 0.91%o) in sulfide samples was reported, with 8°°Cu values decreasing
from 0.29 = 0.56%o (n = 20) in low-grade peripheral alteration zones to
—0.25 = 0.36%o0 (n = 30) at the margins of mineralized zones (Li et al.,
2010).

5.2. Exploration hydrogeochemistry

Low-temperature, post-depositional (secondary) dispersion of Cu can
produce geographically-large Cu isotope ratio footprints in environments
where Cu concentrations are relatively low or similar to background and
otherwise do not reveal proximal mineralization (Kidder et al., 2021,
2022; Mathur et al., 2013; Su et al., 2018). These footprints have been iden-
tified in low salinity and neutral groundwaters, leached caps of mineral de-
posits, and areas of deep post-mineral cover where the upward mobility of
Cu is limited. Despite this, there has been very limited application of the
8°°Cu value in exploration hydrogeochemistry.

Surface and groundwaters that interact with undisturbed deposits com-
monly have several orders of magnitude lower concentration of trace
metals compared to water impacted by acid rock drainage (ARD)-related
processes (Ficklin et al., 1992; Goodfellow, 2007; Plumlee et al., 1999). A
key case study is the Pebble porphyry deposit (Alaska), where the oxidative
dissolution of chalcopyrite in the orebody is accompanied by a high degree
of Cu isotope fractionation in the shallow groundwater seeps and streams
proximal to the orebody that are relatively enriched in ®*Cu (Mathur
et al., 2013). Groundwaters proximal to the Picaron porphyry prospect
(Chile) and the Kitumba Fe-oxide-Cu-gold (I0CG) deposit (Zambia), as
well as other deposit types (massive sulfide, skarn, and epithermal), are
also relatively enriched in ®*Cu (Kidder et al., 2021, 2022; Mathur et al.,
2013; Su et al., 2018). Mathur et al. (2013) reported a decreasing trend
for the §°°Cu value of dissolved Cu in shallow groundwater seeps and
streams sampled from proximal to Pebble to more distal sites. Similarly,
groundwater proximal to mineralization at Picaron has §°°Cu values that
are estimated to be up to ~2.3%o higher than mineralization and decrease
downgradient from the mineralization (Kidder et al., 2021). Downgradient
Cu stable isotope fractionation has been attributed to adsorption onto Fe
oxide minerals (Mathur et al., 2014; Su et al., 2018) and Fe-Mn oxide min-
erals (Kidder et al., 2021), but this is most likely related to preferential ad-
sorption of **Cu to metal oxyhydroxide minerals (Balistrieri et al., 2008;
Pokrovsky et al., 2008), a ubiquitous phase for sequestering metals and
other elements in soil and sediment, or it is caused by mixing with other
Cu sources (Kidder et al., 2021).

6. Tracing anthropogenic sources of Cu

Copper is a vital micronutrient that facilitates numerous biological pro-
cesses in organisms (Weinstein et al., 2011), but it can be toxic at high con-
centrations (Yruela, 2005). This has driven interest in the use of the Cu
isotope ratio for identifying sources of anthropogenic Cu contamination.
Anthropogenic materials, such as cement, road dust, motor vehicle prod-
ucts, antifouling paint, Cu pesticides, pig slurry, flotation tailings, slag,
urban aerosols, and particles originating from smelting and flue gas
cleaning processes are generally characterized by §°°Cu values that are
higher than geological materials, including upper continental crust (0.07
+ 0.10%0), uncontaminated sedimentary materials from estuaries
(—0.04 = 0.18%0), and SPM from rivers, wetlands, and estuaries (—1.02
to 0.09%o, —0.31 = 0.10%o0 mean) (Aradjo et al., 2019a, 2021b;
Babcsanyi et al., 2016; Blotevogel et al., 2018; Briant, 2014; Dong et al.,
2017; El Azzi et al., 2013; Fekiacova et al., 2015; Gelly et al., 2019;
Gonzalez et al., 2016; Kiibek et al., 2018; Liu et al., 2015; Savage et al.,
2015; Schleicher et al., 2020; Souto-Oliveira et al., 2018, 2019; Takano
etal.,, 2020; Wang et al., 2017).
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Traffic-related Cu sources, including PM,, (inhalable particles with di-
ameters of <10 pm) road tunnel dust, road dust, road furniture, brakes,
and tires have §8°°Cu ranging from —0.18 to 0.71%o (median = 0.34%uo),
with road paint and pavement having values over 0.55%o (Dong et al.,
2017; Schleicher et al., 2020). The 8%°Cu values of urban aerosols from Bar-
celona (Spain), London (United Kingdom), Metz (France), Zaragoza (Spain),
and Sdo Paolo (Brazil) range from —0.42 to 0.98%o (Schleicher et al., 2020).
The Cu isotopic composition of aerosols at the Dongsha Atoll in the northern
South China Sea are comparable, with §°°Cu values ranging from —0.13 to
0.83%o0 in PM, 5 ;, and from —0.33 to 0.37%o in PM,, 5, and this is specu-
lated to be related to Cu emissions from local anthropogenic activities
(Takano et al., 2020). The §°°Cu value of cement in Sdo Paolo ranges from
0.10 to 0.61%o, and is in agreement with the Cu isotopic signatures of raw
materials used for cement production (Souto-Oliveira et al., 2018, 2019).

Smelter emissions are another common source of Cu, which is typically
distributed as airborne particulates that become incorporated in soils. It is
generally accepted that Cu is not fractionated during the smelting processes
as Cu is only volatile above 2595 °C, higher than common smelting temper-
atures (Gale et al., 1999; Gelly et al., 2019). Therefore, the §°°Cu values of
emissions from smelters generally reflect the original composition of proc-
essed ores, although Cu isotope fractionation has been reported during
transit (Bigalke et al., 2011; Gelly et al., 2019; Mattielli et al., 2006). At
the Escalette smelter (France), chimney coatings have a 8°°Cu value of
—0.46 = 0.01%o at the base that increases to —0.22 = 0.04%o at the
top, suggesting that the chimney coatings retain ®*Cu and the vapour
phase is relatively enriched in %5Cu (Gelly et al., 2019). The §°°Cu value
for slag ranges from —1.70 to 0.55%c and particles originating from
smelting and flue gas cleaning processes show §°°Cu values ranging from
0.15 to 0.49%o, whereas the §°°Cu values for flotation tailings range from
0.95 to 1.1%o (Aratjo et al., 2021b; Briant, 2014; Gelly et al., 2019;
Kiibek et al., 2018; Souto-Oliveira et al., 2018). Slag and smelter feed
from north-east Norway have relatively low 8°°Cu values of —1.67 =
0.04%o0 and — 1.68 = 0.15%o, respectively, but this is enriched in °*Cu rel-
ative to the remarkably depleted bedrock (§°°Cu values ranging from
—3.52 = 0.16%0 to —3.04 = 0.32%o) from which they are likely derived
(Sillerov4 et al., 2017). Surficial (oxidized) tailings in the tropical mining
region of Taxco, Guerrero (southern Mexico) have §°°Cu values ranging
from —1.91 to 0.91%o, with a mean of —0.32%o (Détor-Almazan et al.,
2017). Pérez Rodriguez et al. (2013) reported a §°°Cu value of 1.32 +
0.03%o in unoxidized tailings at the Laver mine (Sweden). This is in con-
trast to a 8°®*Cu value of around 0% for oxidized tailings and a §°°Cu
value as low as —4.34 = 0.02%o at the redox-boundary zone. The deple-
tion of ®*Cu in oxidized tailings is likely due to the oxidation of primary sul-
fide minerals that results in the enrichment of ®*Cu in Cu®?* in the aqueous
phase. The enrichment of ®*Cu in the redox-boundary zone is likely due to
the preferential adsorption of ®*Cu onto Fe-oxyhydroxide minerals during
fluid percolation and the precipitation of the secondary Cu mineral, covel-
lite. Conversely, at Chafiaral Bay (Chile), the biotic fractionation of Cu iso-
topes by microorganisms is invoked as a mechanism to explain lower §°°Cu
values at the base of the mine tailings (0.42%o0) compared to the surface
(0.92%o) (Roebbert et al., 2018).

Efforts are being made to trace agricultural contaminants, which can
end up in microorganisms, wildlife, humans, soils, SPM, river water, and
ocean water. In the case of pesticides, §°>Cu values vary significantly (rang-
ing from —0.49 to 0.91%o), depending on the Cu speciation and
manufacturing date, which complicates their tracing (Babcsanyi et al.,
2016; Blotevogel et al., 2018; El Azzi et al., 2013). Pig slurry also has vari-
able 8°°Cu values, but it is consistently enriched in %5Cu (0.12 and 0.52%0)
(Fekiacova et al., 2015).

6.1. Soils and surficial sediments

The determination of both Cu concentrations and the Cu isotope ratio in
soils is used in environmental and mineral exploration studies as a vector
towards the source (anthropogenic or ore deposit from which the Cu was
dispersed). However, soil Cu isotopic compositions vary independently
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from Cu concentrations and correlate with organic matter, making them
more sensitive indictors of changes in soil chemistry (Fekiacova et al.,
2015). Surface soils sampled proximal to smelter, mining, industrial, and
agricultural operations commonly display 8°°Cu values that reflect anthro-
pogenic Cu input, with decreasing influence at depth. This has most com-
monly presented as a decrease in §°°Cu values with increasing soil profile
depth, but this can depend on the soil horizon sampled (Bigalke et al.,
2010a; Fekiacova et al., 2015; Kusonwiriyawong et al., 2017; Mihaljevi¢
et al,, 2018, 2019; Wang et al., 2022a).

In a review of Cu isotopic compositions in polluted and unpolluted soils,
Fekiacova et al. (2015) reported that polluted soils (defined in articles as
those where pollution is explicitly mentioned or where soils have anomalous
metal concentrations (Baize, 1997)) have §°°Cu values that are significantly
enriched in ®°Cu (~0.2%0) compared to unpolluted soils (~0%so). It is possi-
ble that this general tendency of polluted soils to be enriched in ®>Cu is
linked to the typically high 8°°Cu of anthropogenic Cu sources. Indeed, the
§°5Cu of road-deposited sediment in the Shihwa National Industrial Com-
plex in Ansan (South Korea) ranges from —0.12 to 0.94%o (Jeong and Ra,
2021). This trend is also observed around the city of Luled (Sweden),
which is industrialized with steelworks and harbours (Pallavicini et al.,
2018). In the city (samples taken within 5 km of local industries), soils are
relatively enriched in ®>Cu compared to suburban soils (samples taken ap-
proximately 10 km from local industries) (Pallavicini et al., 2018). However,
there are exceptions to this tendency. In surface horizon soils and floodplain
sediments near wine-producing areas, low 8°°Cu values (—0.37 to
—0.14%o) reflect the spraying of the Bordeaux mixture (Cu(OH), +
CuSO,4, —0.34 = 0.08%o), a fungicide that is sprayed in vineyards, fruit
farms, and gardens to control vine downy mildew (Chen et al., 2008; El
Azzi et al., 2013; Petit et al., 2013). However, it is difficult to make general-
izations about the §°°Cu trends of pesticide-contaminated soils because the
8°°Cu value of pesticides varies greatly (—0.49 to 0.91%o0) (Babesanyi
et al., 2016; Blotevogel et al., 2018; El Azzi et al., 2013).

At the Kombat mine site (Namibia), the variation of §°*Cu with depth is
attributed to different source endmembers, with near-surface soils
reflecting dust-blown tailings Cu and deeper soil horizons reflecting bed-
rock materials (Mihaljevi¢ et al., 2019). Adsorption may also play a role
as soil water descends through the soil profile, with adsorption onto
metal oxyhydroxide minerals and organic matter favouring the retention
of the heavier ®*Cu (Moynier et al., 2017). The favouring of °*Cu during
complexation with soil organic matter is further demonstrated in a study
that assessed the severity of soil pollution and bioavailability of Cu in
soils at various distances from a Ni refinery (Lower Swansea Valley,
United Kingdom), with soil organic matter being enriched in ®*Cu com-
pared to dissolved bioavailable Cu (AGSCUOrgﬂmC _ Bioavailable = 0.12 £
0.13%o) (Schilling et al., 2021). Soil metal contents are predominantly asso-
ciated with organic matter, which reduces their bioavailability, so the Cu
isotope ratio may be used as a proxy for metal bioavailability and shows po-
tential for tracing the fate and mobility of Cu in soils (Schilling et al., 2021).
A Cu isotopic signature from the oxidative weathering of skarn-derived Cu
sulfide minerals in the historic mining area of Tongling (China) could be
identified in the upper portions of soils (5 to 100 cm) within 1 km of the
tailings (Su et al., 2018). Soil samples collected from the Tsumeb mining
district (Namibia) display higher 8°5Cu values (0.13 to 0.76%0) compared
to soils from an uncontaminated area (§°°Cu = —0.01 to 0.14%o), allowing
for the identification of contaminated sites (Kiibek et al., 2018). This was
suggested to reflect the Cu isotopic composition of old flotation tailings
(8°°Cu = 0.95 to 1.1%o), slag (0.11 to 0.55%o), and particles originating
from the smelting and flue gas cleaning processes (0.15 to 0.49%o). Con-
versely, both proximal and distal to the Nkana Cu smelter in the Zambian
Copper Belt (ZCB), the §°°Cu value of the surface soil (—0.44 to
—0.40%o) is similar to that of the concentrates processed in the smelter
(—0.75 to —0.45%o0), with both locations appearing to be affected by Cu
ore dust (Mihaljevi¢ et al., 2018). The 8°°Cu values of organic matter-rich
topsoil (—2.40 = 0.04%o to —0.43 *+ 0.08%o) near a smelter in north-
east Norway appear to reflect a combination of the local bedrock (—3.52
+ 0.16%o0 and —3.04 = 0.32%o), slag and smelter feed (—1.68 =
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0.15%o0 and —1.68 =+ 0.04%o, respectively), and the preferential adsorption
of ®*Cu onto organic matter (Moynier et al., 2017; Sillerova et al., 2017).
Despite the general tendency of anthropogenic Cu sources to have
higher §°°Cu values than geological sources (~0%o), it can be difficult to
define a specific §°°Cu value range for the fingerprinting of Cu derived
from mining-related activities, as the §°°Cu values of the original local geo-
logical materials and their products can vary considerably (Novak et al.,
2016; Sillerov4 et al., 2017). Given the same applies to most other mate-
rials, the §°°Cu values of potential natural and anthropogenic Cu sources
in a given study area must be determined to enable their fingerprinting.

6.2. Vegetation

It was previously proposed that due to the preferential incorporation of
53Cu by bacterial species, fungi, plants, and higher organisms, the Cu iso-
tope ratio may serve as a marker for terrestrial biological activity
(Navarrete et al., 2011a). However, this proposal is challenged by more re-
cent work that demonstrates that an isotopically light Cu signature is not
unique to biological uptake, with ®*Cu concentrating during reductive pre-
cipitation of Cu-bearing minerals (Ehrlich et al., 2004; Pekala et al., 2011;
Qi etal., 2019) and preferentially adsorbing onto SPM, oxic soils, birnessite,
and kaolinite (Jjichi et al., 2018; Li et al., 2015; Sherman and Little, 2020;
Vance et al., 2008, 2016; Wang et al., 2017). Fortunately, the Cu uptake
patterns of organisms can be leveraged in other ways, and there is a grow-
ing body of work that demonstrates that Cu isotopic analysis of vegetation
can be a powerful tool for tracing anthropogenic sources of Cu.

Vegetation (including trees and their various organs) reflects the geo-
chemistry of the substrate and represents an advantageous sampling me-
dium for exploration and environmental geochemistry because vegetation
occurs globally in most environments and root systems are commonly
vast, resulting in the collection of mobile elements over larger areas and
depths than soils, which rather represent a point sample (Kyser et al.,
2015). Determination of the Cu isotope ratio in plants is just beginning to
play a role in tracing the pathways of metal migration from contaminated
sites, and in order to effectively employ this approach, several important
variables must be controlled for when sampling vegetation as they can in-
fluence isotopic compositions. These include selection of species (influ-
ences Cu uptake), compartment sampled (root, stem, leaves, flowers,
ete.), and height of the plant growth at which they are sampled (Jouvin
et al., 2012; Li et al., 2016; Navarrete et al., 2011b; Ryan et al., 2013;
Weinstein et al., 2011; Zheng et al., 2005; Zhu et al., 2010).

Grass specimens collected from the Tsumeb mining district (Namibia)
display higher §°°Cu values (0.15 to 0.64%o) compared to grasses from an
uncontaminated area (§°°Cu = —0.17 to 0.03%o) (Kiibek et al., 2018).
As for Tsumeb soils, this likely reflects the Cu isotopic composition of min-
eral processing-related materials. In addition to the analysis of soils,
Mihaljevi¢ et al. (2018) reported the 8°°Cu values for tree cores from
pines in areas impacted by Cu ore dust around a Cu smelter in the ZCB.
Tree rings proximal to contaminated sites display §°°Cu ranges similar to
the values obtained for contaminated soils and processed ore (—0.88 to
—0.31%o0), compared to lower values (—2.22 to —0.76%so) at the less con-
taminated site. These patterns were suggested to be the product of the inter-
ception of Cu dust particles rather than uptake by tree roots (Mihaljevi¢
etal., 2018). The particular advantage of tree cores as a sampling medium
is that they reflect a chronology of their chemical environment and can
serve as a temporally-resolved record of anthropogenic activity, with
older trees even having the potential to provide a reliable record of pre-
global industrialization conditions (Kyser et al., 2015; Schmidt et al.,
2017). However, to the best of our knowledge, this potential to identify
anthropogenic input over time has not been taken advantage of with Cu
isotopic analysis and represents a promising future research opportunity.

6.3. Aquatic settings

Vance et al. (2008) presented an extensive dataset of §°Cu values for
rivers worldwide and constrained a §°°Cu range for dissolved Cu of 0.02
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to 1.45%o, with a discharge-weighted average of 0.68%o. Similarly, the best
estimate to date for the Cu isotopic composition of seawater is about 0.65%o
(Little et al., 2018). In contrast, a complementary light Cu isotopic pool is
present in SPM from aquatic environments (rivers, wetlands, estuaries;
§°°Cu = —1.02 to 0.09%o, —0.31 = 0.10%o mean) and uncontaminated
sedimentary materials from estuaries (—0.04 = 0.18%o) (Aradjo et al.,
2019a; Wang et al., 2017). The heavier Cu isotopic composition of dis-
solved Cu from river and seawater is most likely due to the enrichment of
3Cu during organic inner sphere complexation of Cu, which is the domi-
nant form of Cu?* binding in the dissolved phase of natural waters
(Moynier et al., 2017), whereas the negative §°*Cu values of solids relative
to the upper continental crust (0.07 = 0.10%) are potentially linked to the
preferential adsorption of ®*Cu onto Mn oxide minerals and clays, as well as
microbial uptake (likely involving a redox conversion) (Ijichi et al., 2018; Li
et al., 2015; Navarrete et al., 2011a; Pokrovsky et al., 2008; Sherman and
Little, 2020; Takano et al., 2021; Vance et al., 2008, 2016).

Recent studies demonstrate Cu isotope fractionation in stream water,
river water, and groundwater around hydrothermal mineral deposits that
is likely related to the oxidative dissolution of Cu sulfide minerals, yielding
8%Cu values that are significantly higher (up to ~2%o) than the original
source compositions at the onset of ARD (Balistrieri et al., 2008; Borrok
et al., 2008; Fernandez and Borrok, 2009; Kimball et al., 2009; Masbou
etal., 2020; Pontér et al., 2021; Viers et al., 2018). The oxidative dissolution
of Cu sulfide minerals can even impact the Cu isotopic composition of larger
systems, such as the Yangtze River (China) (Wang et al., 2020b). The Yang-
tze River and its tributaries display much higher dissolved §°°Cu values
(0.59 to 1.65%o and 0.48 to 1.20%o, respectively) compared to the
discharge-weighted average of 0.68%o for rivers worldwide, reflecting, in
part, the presence of numerous Cu sulfide deposits (Vance et al., 2008;
Wang et al., 2020b).

Despite waters being the primary means of Cu dispersion in ARD-
affected areas around mined or unmined mineralization, and evidence of
unanimously elevated §°°Cu values in waters that have interacted with
Cu sulfide minerals, there are very few studies that seek to trace Cu sources
and dispersion pathways using Cu isotopic analysis. Masbou et al. (2020)
demonstrated the potential of the §°°Cu value of water from the Meca
River (Spain) to trace Cu contamination from the Tharsis Mine in the
Iberian Pyrite Belt (IPB, Spain), with the §°*Cu values for upstream samples
varying from —0.47 to —0.08%o and downstream samples varying from
—0.63 to 0.31%o (Masbou et al., 2020). Higher §°°Cu values upstream
were attributed to the oxidative dissolution of primary sulfide minerals,
whereas downstream, similar to what is reported in Kidder et al. (2021),
Mathur et al. (2013, 2014), and Su et al. (2018), the decrease in §°°Cu is
most likely related to the preferential adsorption of 55Cu onto metal
oxyhydroxide minerals (Balistrieri et al., 2008; Pokrovsky et al., 2008), or
mixing with other Cu sources (Kidder et al., 2021). Similarly, Viers et al.
(2018) reported 8°°Cu values in river water proximal to ARD-producing de-
posits in the IPB that are higher than in background mining waters, perco-
lating shallow groundwater, and lake water. This likely results from the
oxidative dissolution of Cu sulfide minerals. However, contrary to observa-
tions by Masbou et al. (2020), the decrease in dissolved Cu is accompanied
by an increase in §°°Cu values, which they suggest to be the result of Cu-
bearing secondary mineral precipitation and groundwater input (Viers
et al., 2018). Similar results were reported near the Ronnskar sulfide ore
smelter (Sweden) (Pontér et al., 2021). Here, a significant decrease in dis-
solved Cu concentrations was accompanied by a trend of increasing §°°Cu
values distally from dust deposit leachate-to-dust deposit well water-to-
groundwater (Pontér et al., 2021). Importantly, although these studies
were conducted with the goal of tracing environmental pollution, this
same study design and data (as shown earlier) can potentially help guide
exploration geochemists in search of mineral deposits (Kidder et al.,
2021, 2022; Mathur et al., 2013, 2014; Su et al., 2018).

Recently, researchers have demonstrated the potential of 8°Cu to trace
the source of industrial and agricultural activities proximal to lake, ocean,
and river systems (Petit et al., 2013; Takano et al., 2020; Thapalia et al.,
2010; Wang et al., 2020b; Zeng and Han, 2020). For example, Cu isotopic
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analysis of a sediment core from Lake Ballinger near Seattle (Washington,
USA) has been used to identify the sources and timing of metal deposition
(Thapalia et al., 2010). The §°°Cu values vary by 0.29%o over the 500-
year core record, with the pre-smelter period (~1450 to 1900) character-
ized by a 8°°Cu of 0.77 = 0.06%o, which increased to 0.94 = 0.10%o dur-
ing the period of smelter operation (1900 to 1985), before decreasing back
to 0.82 = 0.12%o during the post-smelting/stable urban land use period
(post-1985) (Thapalia et al., 2010). Petit et al. (2013) measured §%°Cu
values for dissolved Cu in creeks draining vineyards that are relatively
enriched in ®*Cu, indicating the influence of anthropogenic contamination
from the spraying of Cu sulfate fungicides. Aratjo et al. (2019a) used sur-
face sediments in Toulon Bay (France) to study metal contamination in-
duced by past and recent naval activities. Elevated Cu concentrations and
negative §°°Cu values compared to uncontaminated areas were attributed
to the mixing of ancient and modern anthropogenic sources of Cu by the
reworking of sediments (Aratijo et al., 2019a). An interesting application
of the Cu isotope ratio that has emerged is the calculation of the relative
contribution of different sources of Cu in SPM. Based on Cu isotopic compo-
sitions (8°°Cu ranging from 0.04 to 0.50%o with a mean of 0.17%) and
mass balance equations for SPM from the Zhujiang River (China), 76.4%
of particulate Cu in the Zhujiang River is sourced from rock weathering,
whereas urban sludge and smelting tailings contribute 15.4% and 8.2%, re-
spectively (Zeng and Han, 2020). In support of this method for determining
the relative contribution of different sources to Cu found in SPM, the initial
isotopic composition of Cu source material may be preserved during the
mixing of two chemically distinct rivers (Guinoiseau et al., 2018). Most re-
cently, it was demonstrated that the contaminant-tracing potential of the
Cu isotope ratio is not limited to water, sediment, and SPM from lakes,
oceans, streams, and rivers, as §°>Cu and Sb/Cu values indicate that road
dust (and to a lesser extent fossil fuel combustion) is the dominant source
of Cu in rain (8°°Cu of —0.23 to 0.87%0), snow (§°°Cu of 0.00 to
0.57%o), and rime (8°*Cu of 0.12 to 0.67%o) samples from Uji City and
Mt. Kajigamori (Japan) (Takano et al., 2021). This is in contrast to rainwa-
ter collected from rural and urban regions of Japan that has §°°Cu values
ranging from —0.12 to 0.03%o (Takano et al., 2014), and snow (—1.07
to —0.24%o, —0.46 £ 0.15%0 mean) which is affected by smelter emis-
sions derived from smelter feed possessing a mean §°°Cu value of —1.68
+ 0.15%p (Sillerové et al., 2017).

6.4. Cu stable isotopes as a biomonitoring tool

The potential of Cu isotopic analysis as a biomonitoring tool is just be-
ginning to be explored, with the §8°*Cu value of bivalve molluscs showing
promise as monitors of anthropogenic Cu contamination in coastal and ma-
rine ecosystems (Aradgjo et al., 2021a, 2021b, 2022). Bivalve molluscs are
filter feeders that bioaccumulate trace metals and their tissues can serve
as monitors of metal bioavailability over time. Crassostrea gigas (oyster)
and Mytilus edulis (mussel) that were monitored in a French coastal site con-
taminated by diffuse anthropogenic Cu sources show §°°Cu values that in-
crease in tandem with Cu bioavailability, reflecting the ®>Cu-enriched
signature typical of mostly anthropogenic Cu inputs (Aradjo et al., 2021b;
Briant, 2014; Kiibek et al., 2018; Souto-Oliveira et al., 2018). Crassostrea
gigas further displayed its use as a biomonitoring organism in a study that
transplanted 18-month old oysters from a relatively pristine area to
Arcachon Bay, France which is experiencing increasing Cu contamination
(Aratijo et al., 2021a). After 12 months in their new location, the oysters'
bodily Cu burdens increased and showed a gradient of increasingly positive
8°5Cu values with proximity to unknown continental Cu source(s), which
taken together indicates a dominantly anthropogenic continental Cu source
(Aradjo et al., 2021a).

7. Isotope metallomics
Copper is a trace element that is essential for the functioning of organs

and metabolic processes in humans (Uauy et al., 1998). Copper makes its
way into the body primarily through the consumption of foods, but
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drinking water accounts for about 6 to 13% of the average daily intake
(Fitzgerald, 1998; Gaetke and Chow, 2003). Copper also enters the body
through inhalation of air particulates derived from natural sources, such
as windblown dust, volcanic particulates, and forest fires, but also from an-
thropogenic sources, including Cu smelters, iron and steel production, and
incinerators (Gaetke and Chow, 2003). Once in the body, the majority of Cu
(occurring mostly as cu*h) absorption occurs in the small intestine, with a
smaller amount absorbed in the stomach (Gaetke and Chow, 2003;
Turnlund et al., 1997). Although an essential nutrient, excessive levels of
Cu can accumulate through ingestion of contaminated food and drink, oc-
cupational hazards, or environmental contamination, commonly to ill ef-
fect (Kelvin et al., submitted). Primarily, chronic Cu toxicity affects the
liver because it is the first site of Cu deposition after entering the blood fol-
lowing absorption (Gaetke and Chow, 2003). This toxicity is typically man-
ifested by the development of liver cirrhosis, and some progress has been
made towards improving diagnosis and prognosis (Costas-Rodriguez
et al., 2015; Lauwens et al., 2018). There may be further potential in this
area for not only improving the ability to diagnose and prognose liver cir-
rhosis, but also tracing anthropogenic sources of excess Cu.

Natural errors of Cu metabolism can also cause deviations from typical
Cu concentrations and isotope ratios in different compartments within the
body. There is a growing research base utilizing 8°*Cu to study metal ho-
meostasis and its disruption in the human body. Other elements, such as
Fe, Zn, Mg, and Ca have also been used, but the majority of studies thus
far have investigated Cu. There are several possible reasons for this. Com-
pared to Zn, Cu likely has a greater specificity for biological processes due
to being 10 to 60 times less abundant in the body than Zn (Albaréde
etal., 2017; Gropper and Smith, 2012). Additionally, Cu isotope fractiona-
tion tends to be more intense and driven by a redox shift between Cu™ and
Cu?", whereas Zn is not redox-sensitive. Unlike for Zn (Sullivan et al.,
2020b), there is also an apparent lack of diurnal or postprandial variations
in blood serum Cu concentrations (McMaster et al., 1992; Stengle and
Schade, 1957) and isotopic compositions (Lauwens et al., 2017). Taken
together, these make Cu an attractive element for isotope metallomics
research.

There is a growing body of literature emerging on the application of Cu
isotopic analysis in biomedicine. Forming the backbone of this research are
studies that investigated factors that influence Cu isotopic compositions in
the healthy state. The Cu isotope ratio has so far been demonstrated to be
affected by age (Jaouen et al., 2013a; Morel et al., 2022), diet (Jaouen
et al., 2017; Van Heghe et al., 2012), sex (Albarede et al., 2011; Boucher
etal., 2021; Jaouen et al., 2012, 2017; Van Heghe et al., 2014), menopausal
status (Jaouen and Balter, 2014; Van Heghe et al., 2014). Whereas these
factors can influence the within-organ Cu isotopic composition, such
changes are typically smaller than those between a given organ or fluid
(Moynier et al., 2022). The 8°°Cu values of organs and fluids tend to cluster
around points that are distinct from each other and are typically limited to
~1%o within-reservoir variations (Balter et al., 2013; Costas-Rodriguez
et al.,, 2019; Moynier et al., 2022). Data from three separate murine
model studies demonstrates that organ 8°°Cu values are largely consistent
even when mice are fed diets with Cu isotopic compositions that differ by
almost 0.5%o (Balter et al., 2013; Costas-Rodriguez et al., 2019; Moynier
et al., 2022). For example, the mean kidney 8°5Cu values from the three
studies are 1.51 * 0.17%o (2SE, n = 3), 1.65 = 0.13%o0 (2SE, n = 14)
and 1.74 = 0.12%o (2SE, n = 14) compared to mean blood plasma/
serum 8°°Cu values of —0.61 = 0.08%o (2SE, n = 8) and—0.67 =+
0.10%o (2SE, n = 7) (Balter et al., 2013; Costas-Rodriguez et al., 2019;
Moynier et al., 2022).

Towards the development of diagnostic/prognostic markers of disease,
the Cu isotope ratio has been demonstrated to be affected by the altered Cu
homeostasis in breast cancer (Larner et al., 2015; Télouk et al., 2015), ovar-
ian cancer (Toubhans et al., 2020), colorectal cancer (Télouk et al., 2015),
colon cancer (Lauwens, 2018), hematological malignancy (Hastuti et al.,
2020b), hepatocellular carcinoma (HCC) (Balter et al., 2015; Bondanese
et al., 2016; Télouk et al., 2022), liver cirrhosis (Costas-Rodriguez et al.,
2015; Lauwens et al., 2018), squamous cell carcinoma (Lobo et al., 2017),
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cholestatic liver disease (Costas-Rodriguez et al., 2019), amyotrophic lat-
eral sclerosis (Sauzéat et al., 2018), thyroid cancer (Kazi Tani et al.,
2021), bladder cancer (Wang et al., 2022b), oxidative stress (Flérez et al.,
2018), macular degeneration (Aranaz et al., 2020), glaucoma (Aranaz
etal., 2021), bariatric surgery recovery (Hastuti et al., 2020a), animal can-
cers (Gourlan et al., 2019), liver transplant recovery (Lauwens et al., 2016),
Wilson's disease (Aramendia et al., 2013; Garcia-Poyo et al., 2021;
Lamboux et al., 2020; Resano et al.,, 2013), and Alzheimer's disease
(Larner et al., 2019; Moynier et al., 2019, 2020). Below, the Cu isotope sys-
tematics of breast cancer and Wilson's disease are discussed in further detail
and future avenues of research explored.

7.1. Breast cancer

The blood serum of breast cancer patients is enriched in ®*Cu compared
to healthy controls, which in theory requires an isotopically heavy Cu reser-
voir in the body to maintain mass balance in the system (Larner et al., 2015;
Télouk et al., 2015). However, the opposite was observed, though from a
very limited dataset (one individual), as an isotopically light §°°Cu value
(0.35%o lower) in a breast cancer tumour compared to adjacent histologi-
cally normal tissue (Larner et al., 2015). From this, it was suggested that
Cu binding in breast cancer cells is driven by the upregulation of
metallothioneins (enriched in ®*Cu) (Larner et al., 2019).

Based on the low §°°Cu values measured in the serum of breast cancer
patients compared to healthy controls, another hypothesis for the nature
of the Cu binding in breast cancer cells was formulated. The second hypoth-
esis proposes that the oxidative chelation of Cu by cytosolic lactate (result-
ing from anaerobic glycolysis in cancer cells) is the main driver of Cu
isotope fractionation in breast cancer cells (Télouk et al., 2015; Warburg,
1956). It was suggested that the observed shift of §°°Cu values in blood
serum from breast cancer patients compared to healthy controls facilitates
the fingerprinting of cytosolic Cu chelation by mono- and bidentate ligands.
In comparison to Cu®", compounds of Cu" are typically depleted in ®*Cu.
For lactate, the combination of Cu?>" oxidation state dominance and bind-
ing to a side hydroxyl (high electronegativity) leads to greater preference
for ®*Cu compared to what would be observed for Cu in a cysteine (Cu-S)
bond (A**Cucy pactate - cys > 1%0) (Fujii et al., 2014; Télouk et al., 2015). Iso-
topically light Cu™ tends to evade chelation by lactate and is excreted into
the bloodstream, resulting in the lower §°°Cu values observed for breast
cancer patients compared to healthy controls (Télouk et al., 2015).

In support of this theory, a statistically significant enrichment of ®*Cu is
reported in HCC tumours, oral squamous cell carcinoma tissues, colon can-
cer, and ovarian cancer tumours compared to non-tumoural tissue (Balter
et al., 2015; Lauwens, 2018; Lobo et al., 2017; Toubhans et al., 2020). Fur-
ther, blood fractions from patients with HCC, oral squamous cell carci-
noma, hematological malignancies, ovarian cancer, breast cancer,
colorectal cancer, colon cancer, bladder cancer, and thyroid cancer have
isotopically light Cu signatures relative to healthy controls, potentially indi-
cating a common dominant Cu isotope fractionation mechanism in cancers
(Fig. 5) (Balter et al., 2015; Hastuti et al., 2020b; Kazi Tani et al., 2021;
Lauwens, 2018; Télouk et al., 2015; Toubhans et al., 2020; Wang et al.,
2022b).

As there are very few actual measurements of §°°Cu values in malignant
breast tumour samples and adjacent histologically normal tissue, additional
samples should be analyzed to help settle the question of what process dom-
inates Cu binding in breast cancer cells and how the distribution of Cu iso-
topes changes in patients. This work should be supported by investigations
to determine the key Cu binding site in breast cancer cell cytoplasm. The
similar Cu isotopic signatures in tumours and serum from patients with dif-
ferent types of cancer suggests that the 8°°Cu value may be a sensitive diag-
nostic marker of cancers that however lacks the ability to differentiate
between them. However, the combination of §°°Cu with other clinical pa-
rameters shows promise in improving the diagnostic potential of the Cu iso-
tope ratio (Hastuti et al., 2020b; Wang et al., 2022b). The area under the
Receiver operator characteristic (ROC) curve (AUC) is commonly used to
assess the diagnostic capability of a variable, such as Cu concentrations or
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Fig. 5. Simplified model of Cu homeostasis and isotope fractionation in cancer cells.
The relative enrichment of ®>Cu or ®*Cu in different molecules is shown. Copper
enters the cell via human Cu transporter 1 (hCTR1), and hCTR1 or glutathione
(GSH) can serve in an intermediary role to transfer Cu to copper chaperones,
antioxidant 1 Cu chaperone (ATOX1), Cu chaperone for superoxide dismutase
(SOD; CCS), and cytochrome C oxidase Cu chaperone (COX17), which then
deliver Cu to its target proteins. Metallothionein (MT) may serve as a storage site.
The target protein for CCS is SOD, COX17 targets synthesis of cytochrome C
oxidase 1 (SCO1), and ATOX1 delivers Cu to the adenosinetriphosphatases
(ATP7A and ATP7B). The efflux proteins, ATP7A and ATP7B, are located in the
trans-Golgi and secretory pathway. Cytosolic Cu chelation by lactate mono- and
bidentates (Lact) is proposed as the mechanism of 85Cu accumulation in tumours
and relative enrichment of ®*Cu in blood serum as isotopically light Cu* tends to
evade chelation by lactate and is excreted into the bloodstream. Adapted after Balter
et al. (2013), Kaplan and Maryon (2016), and Wang et al. (2022b).

Increased anaerobic
glycolysis and #*Cu
chelation by lactate

Serum 8%°Cu decreases
over time due to 55Cu
chelation by lactate and

Serum efflux of remaining #Cu

8°°Cu values. As a recent innovation upon this, a machine learning model
was developed to classify bladder cancer and non-bladder cancer subjects
based on two-dimensional Cu signatures (Cu concentration and 8% Cu
values in blood plasma and red blood cells) (Wang et al., 2022b). The
AUC of the machine learning model was distinctly greater than those gen-
erated without machine learning, with a high sensitivity, high true negative
rate, and low false positive rate for the diagnosis of bladder cancer (Wang
et al., 2022b). This provides a strong case for the application of machine
learning in future studies investigating the diagnostic potential of the Cu
isotope ratio in breast cancer or other diseases.

7.2. Wilson's disease

Wilson's disease (WD), a hereditary Cu metabolism disorder, is typified
by excess Cu accumulation in the liver. Copper is incorporated into cerulo-
plasmin, the main Cu-binding protein in blood serum (Prohaska and
Gybina, 2004), with the help of Cu-transporting adenosinetriphosphatase
(ATP7B), which also facilitates its removal from the liver through secretion
into bile to be stored in the gall bladder and excreted via feces (La Fontaine
et al., 2010). Wilson's disease patients have a mutation in the ATP7B gene,
which encodes the ATP7B protein, and (1) causes ceruloplasmin to be se-
creted in a form that lacks Cu and quickly breaks down in the bloodstream,
and (2) disrupts the excretion of liver Cu in bile (Gitlin, 2003). Together,
these result in the gradual accumulation of Cu in the liver, and lead to hepa-
tocyte dysfunction, cell death, and the eventual release of Cu into the blood-
stream and accumulation in other parts of the body (Bull et al., 1993; Gitlin,
2003; Tanzi et al., 1993). As such, patients with WD can have Cu liver con-
centrations as high as 5000 pg g ', compared to a range of 12.5 ug g * to
80.8 pg g ! (average of 34.9 g g~ ') in subjects who had no evidence of
liver disease and normal liver histology (Ferenci et al., 2005).

Thus far, four studies have investigated Cu isotope fractionation in-
duced by WD (Aramendia et al., 2013; Garcia-Poyo et al., 2021; Lamboux
et al., 2020; Resano et al., 2013). In a pilot study, the 8°°Cu values of
blood serum from treated WD patients were enriched in lighter ®*Cu com-
pared to healthy controls (Aramendia et al., 2013), and this was later sug-
gested to be due to the low efficiency of Cu incorporation into
ceruloplasmin in WD patients and the impairment of Cu excretion in bile,
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which is relatively enriched in %3cu (Costas-Rodriguez et al., 2019).
Blocked biliary flow by bile duct ligation has been demonstrated to result
in the accumulation of ®*Cu in the liver and the general accumulation of
53Cu in the body, and may help explain the light Cu isotopic composition
observed in the serum of WD patients (Costas-Rodriguez et al., 2019). How-
ever, just as the hyperaccumulation of Cu in the liver of WD patients is ac-
companied by the depletion of Cu in blood serum (Aramendia et al., 2013;
Ferenci et al., 2005), the relative enrichment of **Cu in blood serum must
be accompanied by a relative enrichment of ®*Cu elsewhere in the body
to preserve the mass balance of the system.

Conversely, the Cu isotopic composition of whole blood from untreated
or treated WD patients and healthy controls was shown to be indistinguish-
able, although the §°°Cu value of whole blood decreased with the degree of
liver fibrosis and the gradient of the phenotypic presentation, suggesting
that WD progression can be monitored using the whole blood §°°Cu deter-
mination (Lamboux et al., 2020). The discrepancy between the results of
Aramendjia et al. (2013) and Lamboux et al. (2020) may potentially be ac-
counted for by the differences between sample types, with whole blood
being a significantly larger reservoir of Cu than blood serum which would
require a much larger effect to shift its §°°Cu.

Currently, a common test for diagnosing WD is the determination of the
amount of Cu excreted in urine over 24 h. Innovating upon this, there have
been efforts towards investigating the direct determination of Cu isotope ra-
tios in dried urine spots by LA-MC-ICP-MS as a diagnostic marker of WD
(Resano et al., 2013). Using 300 pl of urine, a significant decrease in
§%5Cu was observed in untreated WD patients compared to treated patients
and healthy controls, in agreement with the findings of Aramendia et al.
(2013). Another advance towards diagnosing WD using low sample vol-
umes was made by Garcia-Poyo et al. (2021), who innovated the determi-
nation of Cu concentrations by direct microinjection of 1 pl of serum into
an ICP-MS and the use of femtosecond LA-MC-ICP-MS for the Cu isotopic
analysis of dried 2 to 15 pl droplets. In this study, WD patients were either
untreated (sampled at the moment of diagnosis), treated with chelators to
increase Cu excretion from the liver, or treated with Zn salts to block Cu ab-
sorption. All groups except WD patients undergoing a chelating treatment
had serum 8°°Cu values of around 0% or positive, indicating the preferen-
tial accumulation of ®*Cu in the liver, whereas those treated with chelators
mostly had negative §°°Cu values. These results are inconsistent with the
blood serum and urine findings of Aramendia et al. (2013) and Resano
et al. (2013), which indicate that ®**Cu must be preferentially accumulated
in the liver of WD patients to preserve the mass balance of the system; how-
ever, this discrepancy was not discussed. The results of Garcia-Poyo et al.
(2021) indicate that ®*Cu is preferentially released by the liver with the
use of a chelating agent or in the case of advanced liver damage, and
show the potential to follow up on the evolution of treatment.

Conflicting Cu isotope data from WD patients so far complicates the use
of 8°°Cu as a diagnostic/prognostic marker. Wilson's disease can be diag-
nosed with the help of Cu concentrations in liver biopsies, but Cu concen-
trations in the liver are insufficient to make a WD diagnosis alone
(Ferenci et al., 2005). Characterizing the Cu isotopic composition of the
WD liver could elucidate the distribution of Cu isotopes in this condition
that so far remains obscured, and indicate the potential of §°*Cu to serve
as a diagnostic marker of WD (Sullivan et al., 2020a). Further, an approach
to WD diagnosis consisting of Cu mass fraction and isotopic analysis of liver
biopsies could further justify the invasive surgical procedure and provide
greater sensitivity and specificity. Finally, larger-scale studies involving
Cu isotope ratio determination in the liver biopsies, blood serum, and
urine of treated and untreated WD patients and healthy controls are re-
quired to resolve conflicts that remain between studies and advance this po-
tential diagnostic/prognostic tool past the pilot stage.

8. Conclusions
Interest in Cu isotopic analysis has increased significantly over the last

20 years, translating into a large body of research. Recently, it has been ap-
plied in novel ways as a (1) mineral exploration tool for vectoring towards
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concealed ore deposits, (2) tracer of Cu contamination in the environment,
and (3) diagnostic/prognostic marker of multiple cancers and other dis-
eases. However, studies still generally report §°°Cu values from a relatively
small number of samples, which limits conclusions that can be drawn. The
biggest barrier to improving sample throughput is the time required for
sample preparation and analysis, but this can be reduced though the optimi-
zation of chromatography methods and automation. Improvements can yet
be made to other aspects of Cu isotopic analysis, and researchers must take
measures to ensure contamination and isotope fractionation during sam-
pling and purification are minimized. This is an especially important con-
sideration in the case of blood collection tubes, which contain additives
and are not specifically designed for trace element or isotopic analysis. Con-
tamination of biologically-relevant elements should be quantified in BCTs
to allow an informed selection of the optimal BCT for specific experiments,
and this will support the methodological standardization of isotope
metallomics studies. Further interlaboratory comparisons of reference ma-
terials will also be important for ensuring that reproducible results can be
achieved for Cu isotope ratio measurements in new material types as the ap-
plication of the Cu isotope ratio expands. Finally, a lack of studies on Cu iso-
tope fractionation during adsorption onto mineral surfaces limits our
understanding of the transport of Cu in the Earth surface environment. In-
vestigations of Cu isotope fractionation during adsorption onto minerals
that play an important role in metal adsorption in soils should be priori-
tized. Taken together, these measures will improve our ability to interpret
results and perform routine, high accuracy and precision measurements
of the Cu isotope ratio in low-Cu samples, thus opening the doors to new,
exciting applications.
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