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In this work, a modular data processing workflow for single-particle (sp) and single-cell (sc) inductively

coupled plasma-mass spectrometry (ICP-MS) is presented. To achieve more reliable detection

thresholds, a special focus is placed on the parameter estimation of Gaussian and Poisson distributions

that describe the background (BG) signal. For Gaussian models, the widely used iterative outlier test was

improved by an algorithm that adjusts the test for different BG levels by incrementing the test factor.

Through careful evaluation, the standard deviation of the experimental sc- and sp-ICP-MS data was

applied as a robust measure of the convergence quality of the test. In addition, the outlier analysis was

separated from the subsequent event detection more strictly than it is often reported. Importantly,

a data-dependent decision criterion based on Gaussian and Poisson modeling was developed to

effectively address extra-Poisson variance in experimental data. In the second part, a gate filter was

developed to reduce the amount of excess false-positive events in sc-ICP-MS. To that end, a secondary

filter based on the signal peak height is used to remove rare false-positive events without affecting the

signal intensity of the events that are detected correctly. Two approaches, based on a numerical

approximation via the detection limit, and critical values of the Gaussian and Poisson distribution are

presented to calculate the gate filter level. Possible sources of false-positive events, some of which are

specific to sc-ICP-MS, are discussed. The combined processing workflow was applied to analyze the

distribution of six endogenous elements in Chlamydomonas reinhardtii cell populations. The gate filter

corrected the cell number concentration by up to 44% (22% on average), and mass per cell by up to 30%

(17% on average).
Introduction
Single-particle and single-cell ICP-MS

Inductively coupled plasma-mass spectrometry (ICP-MS) has
been established as a versatile analytical technique for the
elemental analysis of nanomaterials on a single particle (sp)
level. In recent publications, it has been applied to answer
complex ecological and toxicological questions with nano-
particles (NPs) of mixed composition or high polydispersity,
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and various surface modications.1–5 A promising variant of sp-
ICP-MS is the analysis of biological cells, which enables the
detection of chemical elements at the single-cell (sc) level. It is
referred to as sc-ICP-MS. Due to challenges in cell handling,
a lot of progress has been achieved through the optimization of
sample introduction and preparation.6,7 Here, the green algal
strain Chlamydomonas reinhardtii (C. reinhardtii) proved to be
a reliable test organism.8,9 At the same time, data processing
and, in particular, the denition of a suitable detection
threshold remain a challenge with great research interest for
both methods.10–13 In this work, a modular data processing
strategy for sp- and sc-ICP-MS is presented. The fundamentals
and applicability of key statistical concepts are discussed, with
emphasis on the specic requirements of sp- and sc-ICP-MS.
The overall goal is to outline an algorithm that reliably char-
acterizes the distribution of the background signal, detects cell
events, and improves the determination of the element mass
distribution and cell concentration.
J. Anal. At. Spectrom., 2023, 38, 2607–2618 | 2607
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Detection criteria

In atomic spectroscopy, Gaussian and Poisson models are
widely used to decide if a signal is greater than the background
and can be considered detected. Gaussian refers to a normal
distribution with the parameters m for the location and s for the
spread. The Poisson distribution has only one parameter m and
describes the probability of observing a positive integer number
of events (0, 1, 2, .) in a given interval. It is a powerful model
for memoryless counting processes such as the ion detection in
an electron multiplier. In contrast to Gaussians, the Poisson
distribution excludes negative values and has a pronounced
positive skew (asymmetry) when m gets small.14–17 In both
models, m is usually estimated with the sample mean of exper-
imental data, and the Gaussian s with the empirical sample
standard deviation (SD). For m $ 10 however, the Poisson
distribution can be approximated with a Gaussian whose vari-
ance (s2) is set equal to the mean, (s2 = m). This gets less
accurate for smaller m but has been reported for m $ 5 and with
some precaution even lower than 5.13,17

Kaiser popularized the widely known “3s” criterion as a limit
of detection based on Gaussian signicance levels. Initially
developed for optical spectroscopy, the concept was generalized
to evaluate a “complete analytical method” based on the stan-
dard deviation of a series of blank samples and also for time-
resolved signal acquisition.14,15 Around the same time, Currie
presented a rigorous formalism of detection criteria with
a focus on non-continuous detection mechanisms like radio-
active decay counting.16 Accordingly, one-sided signicance
levels dene a critical limit (LC) based on the a-error (a: false-
positive proportion) while the detection limit (LD) factors in
both a- and b-error (b: false negative proportion). This deni-
tion allows that the upper a% of background signals would be
falsely identied as true signals, and the lower b% of true
signals would be misinterpreted as background (BG). Formally,
LC and LD refer to the net signal aer a blank correction, and the
corresponding expressions for the gross signal are YC and YD.
Panel A in Fig. 7 contains a graphic representation of this
concept, and Table 1 summarizes the expressions given by
Currie for the “well-known” case, which will be discussed in the
following section.16 In addition, the Gaussian model assumes
equal variances of true signal and BG, and the Poisson model
uses the approximation s2 = m. One-sided z-scores for the
standard normal distribution, that are a measure of the area
under the Gaussian function, are applied for both models with
z1−a = zb. Interestingly, the Gaussian LD obtained as “3.29s” is
numerically close to Kaiser's “3s”. The corresponding Poisson
expression differs by a constant summand of z2= 2.71, resulting
Table 1 Equations for the “well-known” case LC and LD for a= b= 5%.16 T
In the specific expressions, mB and sB, denote the mean and sample stand
value expression. The corresponding gross expressions are YC and YD

Denition Gross expression Gaussia

LC = z1−a × s YC = LC + mB (1) LC = 1.
LD = LC + zb × s YD = LD + mB (4) LD = 3.

2608 | J. Anal. At. Spectrom., 2023, 38, 2607–2618
from the heteroskedasticity of the distribution.16 These
formulae are useful because the exact Poisson limits are not
common in all soware packages, and there is no analytic
expression for LD.11,16

In sp- and sc-ICP-MS, detection thresholds decide if the
pulse height of a time-resolved signal is large enough to be
counted as part of an event. The parameters of the models are
oen estimated with the mean (mB) and SD (sB) directly from the
time-resolved BG signal. As an example, one of the rst publi-
cations on liquid sample introduction sp-ICP-MS by Degueldre
et al. reports the “3sB” criterion as the particle event detection
threshold, which has been widely adopted.18–21 As an alternative,
the Poisson expressions in Table 1 were applied to take
advantage of the ion counting-based signal from the secondary
electron multiplier detector in ICP-MS.12,22,23 More recent
instruments are particularly suitable for Poisson statistics
because shorter dwell times (DTs) are possible, generating only
a few counts per reading.11,12,23 Usually, the time-resolved signal
is not subjected to a net correction, and the gross expressions
(YC, YD) apply. Alternatively, empirical detection thresholds
have been reported for NP samples based on the quantiles of
a blank sample signal.24 In sc-ICP-MS, however, cell suspen-
sions can hardly be simulated with a blank due to deterioration
processes. Since a Gaussian or Poisson model predicts proba-
bilities without requiring an observation in a blank sample, this
approach was preferred in this work.
Outlier tests

In the context of sp- and sc-ICP-MS, each data point of an event
signal represents an outlier that distorts the estimated mB and
sB of the BG distribution. For Poisson models, the mean may be
replaced by the median which is more robust against outliers.12

At low signal levels, however, themedian is trivially always equal
to zero. For Gaussian models, which require s, the problem is
predominantly solved by iteratively removing the outliers based
on the “3sB”, or more generally, “f × sB” criterion.19,25,26 Here, f
represents a constant factor. This method calculates the mean
and SD of the intensity data, removes all data points outside
a range of “mB ± f × sB” and repeats this procedure until no
points outside the range remain. In the literature, a wide range
of values for f from 1 to 10 is reported, and the same f is usually
applied for both the outlier test and the detection
threshold.18,25,27–29 Tuoriniemi et al. investigated optimization
strategies that systematically evaluate the same data set for
different integer values up to f = 20, choosing f = 5 to minimize
false-positive events for most analyses.30,31 Hendriks et al.
pointed out that a factor of f > 5 may indicate a mismatch
he general definition uses z-scores for the standard normal distribution.
ard deviation of the background signal, respectively. LC and LD are net

n model Poisson model

645 × sB (2) LC ¼ 1:645� ffiffiffiffiffiffi

mB
p

(3)
29 × sB (5) LD ¼ 2:71þ 3:29� ffiffiffiffiffiffi

mB
p

(6)

This journal is © The Royal Society of Chemistry 2023
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between the data and a Gaussian model because such an event
would be simply too rare.32 In this work, the iterative approach
is examined in detail to identify failure points and develop an
improved procedure.

The “well-known” background

In the following section, Currie's statistical approach is
reviewed with respect to the detection criteria in sp- and sc-ICP-
MS. According to the denition, the null hypothesis H0 states
that the difference of the observed detector response (IS+B) and
the underlying blank signal (IB) is zero. In that case, no net
signal (IS) would be present.16 Such a difference of two random
variables (d = IS+B − IB) can be evaluated with a paired differ-
ence test, hence the term “paired observations” given in the
literature.11,16 The reasoning is analogous to comparing a pair of
sample and corresponding blank as discussed by Kaiser.14

Using propagation of uncertainty, the variance of the difference
can be estimated as sd

2 = sS+B
2 + sB

2. Experimentally, sB is
readily available from observations of the BG signal or suitable
blank samples. Assuming similar variances for signal levels of IB
and IS+B, the variance of the observed detector response sS+B can

also be approximated by sB, resulting in sd ¼ ffiffiffi

2
p

$sB.16 Alter-
natively, the BG can be characterized through a long series of
observations. Such a “well-known” BG provides reliable esti-
mates of mB and sB. Instead of a pairwise comparison, the “well-
known” BG is treated as a constant signal offset. For the net
signal difference, the BG does not represent a random variable
(d= IS+B− mB), which reduces the variance estimate to sd= sS+B.
Finally, the “well-known” sB is again used as the estimator for
sS+B, giving sd = sB.16 eqn (2) could hence be interpreted as
LC = 1.645 × sd, corresponding to the 95th percentile of cases
in that no net signal would be present. In sp- and sc-ICP-MS, the
associated events are rare and short intensity spikes. Conse-
quently, most data points are pure background signal. By
removing the outliers, the large number of remaining data
points can be reasonably considered a “well-known” back-
ground. For instance, with a DT of 1 ms, a sampling time of
60 s generates 6 × 104 observations. With a typical event rate of
#50 s−1 and event duration of 0.5 ms, there are only#4.5 × 103

detector readings associated with an event.33,34 Following
a similar argument, test statistics for small sample sizes like
a t-test are not required because the large number of observa-
tions provides well-known parameter estimates.16 As a result of
these considerations, the expressions for the “well-known” case
(Table 1) are used in this work.

Limitations and ambiguities

The critical limit considers the false-positive rate (a) based on
the BG distribution. It represents the signal level that is
signicantly greater than the BG and therefore considered
“detected”. Following this reasoning, LC is an appropriate
criterion to identify an event signal peak in sp-ICP-MS. The
detection limit LD provides an a priori performance metric for
analytical methods. It requires assumptions about the distri-
bution of the true positive signal and the tolerated false-
negative proportion (b) to guarantee that a method is capable
This journal is © The Royal Society of Chemistry 2023
of detecting, e.g., a type of NP with a certain diameter. If LC was
reported as the method detection limit, the mean value of the
lowest detectable signal would be set equal to LC. This would
discard the bottom half of the true signal distribution below LC
and thus imply b = 50%.16 In sp-ICP-MS, this would underes-
timate the number concentration and overestimate the size
with the magnitude of the bias depending on the number of
data points per particle and the particle mass distribution.

While theory supports a detection threshold based on LC, the
commonly used formulae (Table 1) are more ambiguous. For LD,
their derivation relies on simplications involving equal variances
and distribution models for true signal and BG, a = b = 5%, and
the Poisson approximation (sB

2 = mB). For the Gaussian model,
this reduces the LD formalism to computing “3.29sB”.16 The
expression is numerically similar to the “3sB” criterion, which was
dened like a critical limit with a z 0.135%, albeit with
a different terminology.14 Analogously, “3.29sB” could be inter-
preted as a critical limit with a z 0.05%. In essence, there is no
absolute rule for setting signicance levels, and the use of, for
example, a = 5% is a convention.14,23,35 Kaiser chose f = 3 as
a semi-empirical value which he found suitable for most cases as
it includes a safety margin for deviations between model and
data.14 In other words, the fact that many authors report a value
close to “3sB” does not require the LD formalism to be causally
correct, but rather indicates a well-suited numerical value. In sp-
and sc-ICP-MS, the applicability of LD is limited by the fact that the
event signal distribution is not known a priori, and that the signal
peaks cannot be described with the same distribution as the
continuous BG. When specialized Poisson models are developed,
e.g., for non-integer time-of-ight analyzer data, a clear distinction
between LC and LD is favorable.13,32,36 For this work, however,
eqn (5) and (6) are referred to as LD out of convention and the
focus lies on the numerical results.

Experimental
Sample preparation

C. reinhardtii culture preparation was carried out at the Institute
of Plant Biology and Biotechnology of the University of Münster.
C. reinhardtii wild-type strain cc124 was grown photo-
heterotrophically under continuous light conditions (30 mmol
photons m−2 s−1) in tris-acetate-phosphate (TAP) medium. TAP
medium was prepared with 20 mmol L−1 tris, 2.5% 40× Bei-
jerinck salts (v/v), 0.1% Hutner trace elements solution, and
1 mmol L−1 phosphate solution from K2HPO4 and KH2PO4

adjusted to a pH of 7 with acetic acid.37 The trace elements
solution was set aside for two weeks and ltered through
Whatman paper before its use. All growth container glass asks
were acid-washed (32% (m/m) HCl) and autoclaved subse-
quently for sterilization. 24 h prior to the collection of cells,
a concentration of 2 × 106 cells mL−1 was adjusted via dilution
with TAP medium. The initial cell concentration was deter-
mined using a Fuchs-Rosenthal cell-counting chamber.
Aliquots of the liquid culture were taken and transported on ice
to the Institute of Inorganic and Analytical Chemistry where
1 mL of the suspension was removed and washed three times
with ammonium acetate buffer (10 mmol L−1, pH 7.5) via
J. Anal. At. Spectrom., 2023, 38, 2607–2618 | 2609
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centrifugation (4 min, 125 g, 4 °C). The pellet was resuspended
in 1 mL of ammonium acetate buffer. Prior to sc-ICP-MS anal-
ysis, the washed suspension was diluted 20× (v/v) with ammo-
nium acetate buffer to a nal cell density of approximately 4 ×

105 cells mL−1. The cell density was determined using an
automated hemocytometer without staining. Cell suspensions
were handled in 2 mL microcentrifuge tubes (Eppendorf SE,
Hamburg, Germany). In all cases, doubly distilled (dd.) water
puried with an Aquatron A4000D water still system (Barlo-
world Scientic, Nemours, France) was used. For method
development, Saccharomyces cerevisiae was obtained as a block
of fresh compressed yeast from a grocery store. 100 mg of the
compressed yeast were suspended in 50 mL dd. water. An
aliquot of 1 mL was washed three times with dd. water via
centrifugation (4 min, 125 g, 4 °C) and nally resuspended in
1mL of dd. water. Prior to sc-ICP-MS analysis, the suspensionwas
diluted to a nal cell density of approximately 4 × 105 cells mL−1

using dd. water. For cell density measurements, 10 mL of
S. cerevisiae suspensions were mixed with an equal volume of
trypan blue stain (0.4%; Invitrogen, Carlsbad, CA, USA) and
analyzed with an automated hemocytometer. Gold nanoparticles
(AuNP) with a nominal size of 50 nm and 60 nm (nano-
Composix, San Diego, CA, USA) were sonicated and diluted with
dd. water to an approximate concentration of 4 × 105 NP mL−1

prior to analysis. All samples were prepared and analyzed with
ICP-MS on the same day as quickly as possible.
Instrumentation

Prior to ICP-MS analysis, cell densities were monitored off-line
with a Countess automated hemocytometer (Invitrogen, Carls-
bad, CA, USA). A 1750 TLLX 500 mL glass syringe (Hamilton
Bonaduz AG, Bonaduz, Switzerland) driven by a KDS-100
syringe pump (KD Scientic Inc., Holliston, MA, USA) was
connected to an iCAP TQ ICP-MS (Thermo Fisher Scientic,
Bremen, Germany) triple quadrupole ICP-MS system operated
with Qtegra 2.10 (Thermo Fisher Scientic) in time-resolved
analysis mode. The pump was placed in an upright position
with the syringe outlet facing downward to prevent sedimen-
tation at the moving plunger and to increase the overall
distance between cells and closest surface in the direction of
sedimentation. The sample ow rate was 5 mL min−1. The ICP-
MS system was equipped with a CytoNeb 50 low-ow concentric
nebulizer, a CytoSpray total consumption on-axis spray
chamber (Elemental Scientic, Omaha, NE, USA), and a nickel
sampler and skimmer cone with a “high sensitivity” skimmer
insert (Thermo Fisher Scientic). A one-piece torch with an
injector of inner diameter of 2.0 mm (Elemental Scientic) was
installed. A DPC17 external mass ow controller (Aalborg
Instruments & Controls NY, USA) was used to deliver a constant
Ar ow of 0.2 SLPM (standard liter per minute) to the nebulizer.
The spray chamber sheath gas was supplied with approximately
1.15 SLPM of Ar from the ICP-MS instrument. Together with the
interface lenses and torch position, the sheath gas ow rate was
optimized daily for highest signal intensities with an oxide ratio
(CeO/Ce) lower than 1.3%. Further relevant ICP-MS parameters
were plasma power of 1550 W, sampling depth at 10 mm,
2610 | J. Anal. At. Spectrom., 2023, 38, 2607–2618
collision/reaction (CR) cell gas He ow rate of 0.74 mL min−1

and O2 ow rate of 0.25 mL min−1. The CR gases were activated
for all monitored elements, but oxide mass shi reactions were
only used for Fe and P as 56Fe/56Fe16O and 31P/31P16O. For
all experiments, a dwell time of 1 ms was set and a sampling
time of 60 s was used. The sample introduction system was
rinsed manually between samples using dd. water rst, and
then 2% (v/v) nitric acid to prevent the acid from mixing with
cells in the syringe, sample line or nebulizer.

Data analysis

The instrument raw data were obtained as a time-resolved count
rate in units of counts per second (cps) from the manufacturer
instrument soware export. For the statistical analysis, and the
Poisson model in particular, all data were converted to counts
per dwell time (cts DT−1) based on the time stamps and count
rate intensities. This also allows for an easier calculation of the
event summed intensity with the unit counts per event. The unit
conversion together with the background signal statistics, event
search and gate lter, which are described in the following, were
all implemented in a Java-based (OpenJDK 15, Oracle, Austin,
TX, USA) in-house soware tool (single particle Tool, spTool2). A
preliminary version of spTool2 has been used and tested
internally and will be made publicly available. The underlying
algorithms are explained in this publication. Inverse cumulative
distribution functions (CDF) and empirical CDFs were calcu-
lated using MATLAB R2022a (The MathWorks, Natick, MA,
USA). Pseudorandom numbers were generated with excel
(Microso 365, Microso, Redmond, WA, USA), and all graphs
shown were created using OriginPro 2023 (OriginLab, North-
ampton, MA, USA).

Results and discussion

The main focus of this work was the proposal of a modular
workow that could improve data analysis in sp- and sc-ICP-MS
through separation of tasks. The statistical models use different
approaches to estimate the BG distribution than for the
subsequent event search. In addition, a gate lter is applied to
remove falsely picked events and reallocate them to the back-
ground data. The aspect of reallocation and revoking the status
as an event distinguishes this from lters that select a certain
range in an event population. In the following examples, the
respective elements Mg, P, Mn, Fe, Cu, Zn and Au were selected
to cover different BG signal levels for the statistical analyses.
The observations are not element-specic but depend on the
signal intensity. Reporting the isotopic mass or m/z only serves
as a reference to the examples in gures and tables within this
work.

Baseline

The background signal distribution is dened based on the
time-resolved raw data of each sample. Two aspects were found
to improve the performance substantially. First, both
a Gaussian and a Poisson model were evaluated. In Fig. 1, three
examples are shown for different BG levels mB of 0.1 cts DT−1,
This journal is © The Royal Society of Chemistry 2023
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Fig. 1 Three experimental BG distributions for different mean signal
levels (mAu = 0.118 cts DT−1, mCu = 5.24 cts DT−1, mMg = 235.4 cts DT−1)
are plotted as signal intensity histograms (gray). A Poisson (green) and
Gaussian (blue) distribution is superimposed. Dashed lines indicate YD
(“3.29sB”). The Gaussian fails to describe the low intensity distribution
(Au) but compensates the overdispersion at high signal levels (Mg).

Table 2 Statistical parameters (mean mB, standard deviation SD and
detection limit YD) of the estimated background for two samples of C.
reinhardtii (24Mg, 63Cu, DT = 1 ms) based on the initial raw data, an
iterative Gaussian “fo × sB” criterion, the Poisson model in eqn (6) and
the generalized extreme studentized deviate (GESD) test for outliers

24Mg [cts DT−1] 63Cu [cts DT−1]

mB SD YD mB SD YD

Raw data 322 748 2783 6.3 12 45
fo = 1 239 0.0 239 5.1 0.0 6
fo = 2 239 28.9 334 4.7 1.9 12
fo = 3 236 40.8 370 5.1 2.4 14
GESD 236 42.1 374 5.2 2.6 14
Poisson 224 34.2 276 5.2 2.5 16
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5.0 cts DT−1, and 235.4 cts DT−1, respectively. For very low BG
levels, the signal distribution has a pronounced positive skew.
As a result, the Gaussian model provides a poor t and under-
estimates the detection threshold. For the mid-range, both
models agree with the observations to a similar degree.
However, at high background levels, the experimental data are
overdispersed, causing the Poisson model to underestimate the
detection threshold. In previous studies, such extra-Poisson
variation was explained by icker noise contributions from
the sample introduction (pump system, nebulizer, and aerosol
transport) and the plasma. Solutions have been reported that
include a correction term based on additional experiments.10,36

Similarly, a doubly stochastic Poisson model or an instrument-
specic compound Poisson model could be considered.13,32,38,39

However, for this workow, the overdispersion at high signal
intensities is addressed with a Gaussian model. The key
consideration was that the model with a better t predicted
a higher threshold in all studied cases. Therefore, a data-
dependent “pessimistic” decision criterion was dened, in
which both models are evaluated and the worse (i.e., higher)
threshold is chosen. The obvious advantage is that the empir-
ical SD of the data directly incorporates the excess variance
without further experiments or modelling, while the Poisson
model covers the lower signal range. There are recommenda-
tions to switch from Gaussian to Poisson when mB is lower than
10 cts DT−1 based on icker noise analysis.36 The “pessimistic”
criterion represents an alternative that includes the in situ
experimental conditions of a sample, which in the case of cell
suspensions is difficult to simulate by a blank. In this work, the
criterion was applied to a total of 668 time-resolved data sets of
AuNP (50 nm), C. reinhardtii and S. cerevisiae suspensions. The
Gaussian model was preferred for 124 sets, with 95% of all cases
having a mB greater than 15.8 cts DT−1. The lowest mB for
a Gaussianmodel was 10.5 cts DT−1. For the remaining 544 sets,
the Poisson model was chosen. The highest observed mB for
a Poisson model was 69.1 cts DT−1 with 95% being less than
12.1 cts DT−1. In summary, the “pessimistic” criterion agrees
well with the transition point of 10 cts DT−1 but allows for
different decisions for individual samples.
This journal is © The Royal Society of Chemistry 2023
The second improvement addresses the outlier test. Match-
ing a blank sample with a cell suspension is problematic since
the analyte concentration is subject to unpredictable variations
caused by the release of ions or adherent residues from the
culture medium. Instead, outlier tests can remove the particle
and cell signals, essentially reconstructing the underlying blank
signal within each sample. This is crucial for the parameteri-
zation and comparison of the Gaussian and Poisson models. In
sp- and sc-ICP-MS, the outlier identication is complicated by
three main facts. First, the number of outliers is expected to be
large but not known a priori. Second, the raw data consist of two
different signal types (BG and events) whose mixed distribution
function is not evident. Third, the mean and SD of the data are
biased by the outliers themselves. For example, in Table 2, the
SD of the raw data is an order of magnitude larger than the SD of
the BG without outliers. All of this can lead to an overestimation
(swamping) or underestimation (masking) of the true number
of outliers, especially when tests designed to identify a single
outlier are repeated.40,41 This also concerns the “3s” criterion
and the standard normal z-score in general. The generalized
extreme studentized deviate (GESD) test described by Rosner as
a modication of Grubbs' test is reported to be more robust and
used for a reference point in this work.42,43 However, it requires
normally distributed data, and the large number of outliers in
sp- and sc-ICP-MS data makes it computationally intensive as it
calculates the critical value and test statistic for each potential
outlier. Therefore, the main focus in this work was a detailed
investigation of the faster “fo × sB” outlier test to understand
when swamping and masking occur in sp-ICP-MS data and how
the algorithm can be stabilized. The unique characteristics of
outlier statistics emphasize that the factor for the outlier test (fo)
and for the detection threshold (ft) should be dened separately.

In Fig. 2, panel A, the “fo × sB” test is applied to time-
resolved data (24Mg) of a C. reinhardtii sample, and the
remaining data points aer each iteration are shown. For fo = 3,
both a visual inspection and a comparison with the results of
the GESD listed in Table 2 support that a valid estimate of the
BG is obtained. For fo = 1, however, the “1s” range with the
tolerated non-outlier values around the mean is so narrow, that
all data points except one numeric value (mB = 238.6 cts DT−1)
are removed. The corresponding SD is zero. Consequently, this
J. Anal. At. Spectrom., 2023, 38, 2607–2618 | 2611
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Fig. 2 Panel (A): iterative removal of outliers is performed on time-
resolved raw data from a sample of C. reinhardtii (24Mg, DT = 1 ms). At
the top, fo = 1 (“1sB”, dark blue) removes all data points except for one
numeric value. After i = 11 iterations, SD = 0 is obtained. Below, fo = 3
(“3sB”, light blue) succeeds within four iterations. Panel (B): the graph
shows the SD of the same data set after each iteration for fo = 1 to 3.
For comparison, the result of the GSED test and the Poisson model eqn
(6) are shown. Star symbols (+) mark the stopping point of the algorithm
in all panels. Panel (C): the effect of different factors fo on the SD is
shown for a blank solution, and a C. reinhardtii sample (24Mg, DT= 1 ms)
using Gaussian models. The green boxes indicate the region of stable
convergence that is limited by the transition points where the algorithm
either underestimated the SD (swamping) or overestimates it if cell
events are present and fo is large (masking).

Fig. 3 Panel (A): varying the step sizeDfo between the outlier test factors
fo reveals the discrete onset of the retention of outliers in the data
occurring between fo= 6.53 and fo= 6.54. Panel (B): at the transition, the
relative standard deviation (RSD) increases above a value of RSD = 1.5.
The data set is taken from a sample of S. cerevisiae (31P / 31P16O,
DT = 1 ms).
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kind of swamping effect causes the test to estimate sB = 0,
which is incorrect and does not provide a meaningful detection
threshold with the “ft × sB” criterion. On the other hand, these
observations were interpreted in such a way that the SD serves
as an indicator of the goodness of the test. Thus, Fig. 2, panel B,
shows the SD of the data aer each iteration, including the
result of the GSED test for comparison. The GESD is expected to
be accurate, since the corresponding set of 24Mg data was found
to be normally distributed in Fig. 1. While fo = 1 yields SD = 0,
and fo = 2 returns a non-zero SD, the swamping effect seems to
be sufficiently suppressed only by incrementing again to a value
of fo = 3. For this value, the nal SD agrees with the GESD test
(Table 2). In addition, in Fig. 2, panel C, both the cell sample
and blank SD only end up in the region with relatively constant
SD and stable convergence when the additional increment is
included. This is supported by an additional data set for 63Cu
data also from a C. reinhardtii sample, which is summarized in
Table 2.

Next, the test performance with larger values of fo in the
range from 1 up to 20 was investigated. In Fig. 2, panel C, 24Mg
data for a sample of C. reinhardtii and a blank are shown. As
expected, the test with fo = 1 yields a SD of zero for both. For
2612 | J. Anal. At. Spectrom., 2023, 38, 2607–2618
larger fo, the blank trivially converges to the SD of the raw data,
that does not contain any cell event signal (i.e., outliers). When
cells are present, the SD initially develops similarly, albeit at
a slow, non-constant rate of increase. However, between fo = 14
and fo = 15, a discrete transition occurs. The SD gets substan-
tially larger, indicating the onset of masking effects and the
retention of outliers in the data. In Fig. 3, panel A and C, the
increment step size Dfo was reduced to evaluate a sample of
S. cerevisiae based on the 31P / 31P16O signal. Here, the
masking effects start earlier, between fo = 6 and fo = 7. Panel C
shows that even with a small increment size of Dfo = 0.01, the
transition is still discrete, perhaps because the count intensity
data are based on integers.

A value of fo = 7 is within the range of commonly reported
values for f.27,30 Therefore, a prevention strategy was developed.
A comparison between different samples and signal intensities is
simplied when the SD is normalized to the mean, i.e., the rela-
tive standard deviation (RSD) calculated as RSD = SD × mB

−1 is
used. In Fig. 3, panel B, the RSD exhibits a sharp transition from
0.7 to 2.7 for Dfo = 1. For this example, 31P / 31P16O data from
a sample of S. cerevisiae was used. Based on more observations,
the comparability of the RSD between different samples and
signal intensities was conrmed, and the maximum tolerated
RSD for the algorithm was set to be 1.5. However, there is an
exception to this rule at low BG levels. For example, Fig. S1,†
panel B, shows that the RSD evolves in a range between 3 and 6
for a data set of AuNP with mB = 0.1 cts DT−1. This apparent
contradiction with the previous statement arises from the
property of the Poisson distribution, that is s ¼ ffiffiffi

m
p

. For values
of 0 < mB < 1, it follows that

ffiffiffiffiffiffi

mB
p

.mB which explains why the
RSD is greater than one for all values of fo. Although a Gaussian
model is not ideal for mB < 10, it is not uncommon in the
literature and also required for the comparison of Gaussian and
Poisson models in this work.28,29 In fact, for fo = 5, a variance-to-
mean ratio (VMR, sB

2 × mB
−1) of 0.92 indicates that the

Gaussian outlier test generates a reasonable BG data set that is
consistent with the expected VMR (VMR = 1) for Poisson
distributed data.
This journal is © The Royal Society of Chemistry 2023
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It should be noted that the point of transition depends on
the event signal frequency and intensity relative to the back-
ground, as well as the number of points per event. Thus, for
different experimental conditions, the corresponding value of fo
is difficult to predict, giving another indication as to why a wide
range of values has been reported for f elsewhere.30,44 As
summarized in Table S1,† samples with a low BG signal like
AuNP usually require a factor of fo z 5. The onset of masking
effects for the sample of S. cerevisiae (31P/ 31P16O) occurred at
fo= 6.6. In summary, the lower limit of fo for one kind of sample
may be close to the upper limit of fo for another sample. This
makes it difficult to propose a universal choice for fo. Consid-
ering that fo does not express a signicance level in the true
sense when used in a repeated test, the algorithm described in
the following section was developed to simply nd a “working
value” of fo.

The algorithm is illustrated as a owchart in Fig. 4. Here,
a brief summary is given. The analysis starts with fo = 1 and
Fig. 4 The flowchart describes the algorithm for the improved,
incremented removal of outliers. Asterisk symbols (*) denote the
starting points for the coarse and fine step size, respectively. Note that
the values for the check conditions mB > 0.05 as well as RSD < 1.5 are
empirical and may require adjustment. If the algorithm does not
succeed, an alternative strategy should be chosen. This could be
a Poisson approximation based on either the raw data median, the last
value of mB or a default value such as mB = 0.1.

This journal is © The Royal Society of Chemistry 2023
increments by Dfo = 1 until a non-zero SD is obtained. The
algorithm interprets SD < 0.05 as “zero”. This was found to be
sufficient and more stable with respect to oating point arith-
metic paired with imprecision due to a lack of signicant gures
in the manufacturer raw data csv-les. In the shown example,
fo = 2 was enough (Fig. 2, Table 2). The rst successful value for
fo is incremented by Dfo = 1, in this case to fo = 3, as already
discussed. Next, the algorithm calculates the RSD. For mB < 1,
RSDs greater than 1.5 are tolerated. If the mean is greater than
one (mB > 1), the algorithm requires RSD < 1.5. Otherwise, it will
decrement the value of fo by one and start incrementing using
steps of Dfo = 0.1. That means, if the algorithm yields SD$ 0 for
fo = 4 and RSD > 1.5 for fo = 5, it will start incrementing at 4.1s,
4.2s, . < 5s. Since the transition occurs in a point-like manner
even at step sizes of Dfo = 0.01, choosing Dfo = 0.1 was found to
be sufficient to stop before the point is reached. For the graph
shown in Fig. 2, fo = 14.5 corresponds to SD = 48.4 cts DT−1

whereas fo = 14.6 already leads to SD = 519 cts DT−1. Here,
fo = 14.5 would be chosen.

As a nal recommendation, it should be dened how the
algorithm proceeds when the raw data have such a low BG level
that virtually no result other than SD z 0 can be obtained. In
this case, using a normal approximation to Poisson with s2 = m

is a suitable choice. As a value for m, both the mean of the last
iteration, but also the median of the non-zero raw data or
a default value m = 0.1 were successfully tested. If the “pessi-
mistic” criterion is applied subsequently, the Poisson model
usually provides the higher detection threshold and replaces
the intermediate result of the unsuitable Gaussian model. All
in all, this set of instructions was found to perform autono-
mously under various test scenarios and for all data sets
involved in this work.

Interestingly, as shown in Fig. 2, panel B, an iteration based
on the Poisson model in eqn (6) cannot converge to zero
because of the constant summand of 2.71, which is a useful
feature of that model in the context of outlier removal. If eqn (3)
is used, the swamping effect occurs due to the low value of fo.
Thus, using the corresponding YD expression of eqn (4) is rec-
ommended for the outlier test.
Event search

Implementing the modular principle, the outlier test statistics
were treated separately from the detection threshold and vice
versa. In this work, “3.29 sB” was used as the detection threshold
corresponding to the YD-type formulae in Table 1, regardless the
value of the factor fo in the outlier test. The YC-type formulae were
considered but the difference was negligible when the gate lter,
which will be explained next, was used. In sp-ICP-MS, event signal
durations of 0.5 ms and longer have been reported.33,34 At a DT of
1 ms, the split-event probability becomes >50%. Thus, a split-
event correction was applied, combining all consecutive data
points above the detection threshold into a single event. The
calculated detection thresholds were rounded to the higher
integer value.36,45Consequently, the search algorithm in this work
considered all detector readings greater than or equal to the
threshold as part of an event.
J. Anal. At. Spectrom., 2023, 38, 2607–2618 | 2613
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Fig. 5 A section of time resolved data (24Mg, DT = 1 ms) from a blank
sample (gray) is overlayed with pseudo-random numbers from
a Gaussian (blue) and Poisson (green) distribution, respectively. Their
parameters (mB, SD) are estimated from the raw data. Cross symbols (×)
indicate points above YD, revealing an excess of false-positive signals.
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Gate lter

Despite the compensation of extra-Poisson variance with
a Gaussian model as presented in the rst data processing step,
observations of excess false-positive signals persisted. To visu-
alize this, in Fig. 5, time-resolved raw data of an ammonium
acetate buffer blank sample are overlayed with simulated
pseudorandom numbers from a Gaussian and Poisson distri-
bution based on the sample mean intensity and SD. In
comparison, the raw data have an unexpectedly high number of
signals above YD from eqn (4)–(6). Extra-Poisson variance
explains why the frequency of these extreme events is larger for
the Poisson (N = 45) than for the Gaussian (N = 15) model.
However, it cannot explain why the respective cumulative
distribution functions (CDF) deviate when the upper quantiles
are examined in detail as shown in Fig. 6. Instead, the CDFs
demonstrate an excess of extreme BG events outside the scope
of the model. Plausible causes include changes in the icker-
Fig. 6 The empirical cumulative distribution function (CDF) of a blank
sample (gray) is superimposed with a Gaussian (blue) and Poisson
(green) CDF. Their parameters (mB, SD) are estimated from the raw data
(24Mg, DT = 1 ms). While the Gaussian matches the overall trend well,
the inset shows a deviation at the upper end, suggesting an excess of
false-positives in the data.

2614 | J. Anal. At. Spectrom., 2023, 38, 2607–2618
noise components such as mass-ow uctuations caused by
the pump, variations in the droplet size distribution or turbu-
lent aerosol transport in the spray chamber.46 In sc-ICP-MS, cell-
compatible buffers usually carry high salt concentrations,
inducing deposits on the nebulizer and in the spray chamber
with adverse effects on the aerosol stability. In addition, both
cell deterioration and xation are known to generate aggregates
with the potential to temporarily change the uid ow through
the sample line and the nebulizer. On the other hand, a sample
may also contain particulate contaminations. Some metal
species are not stable in cell culture media or to matrix changes
during the sample preparation and may form NP through
precipitation. In addition, cells can release particulate species
such as vesicles, aggregated macromolecules, micelles, or
fragments. If the sample cleanup relies on a centrifuge, any
particulate matter of similar sedimentation coefficients cannot
be separated. Such a mixed BG with particulate and dissolved
components is a challenge for existing detection threshold
models. The particulate fraction is not part of the Gaussian or
Fig. 7 Panel (A): Poisson probability densities for background (BG) and
signal (S) illustrate the definitions of YC and YD for a = b = 5%. An
additional critical value YC,a with higher significance levels is shown
(a = 10−9, red line). Panel (B): exemplary cell signal peak above
a pseudorandom number BG with DT = 1 ms. YD (dark blue) and
YC,a (a = 10−9, red line) are shown. If YD was increased to filter the
false-positive signal (red), the dark blue peak area would also be
lost. Panel (C): the ratio rg between the gross critical value YC,a and YD
based on eqn (5) and (6) is plotted against the mean BG signal mB.
For a = 10−5 (4.3s) to a = 10−10 (6.4s), the ratio predominantly takes
a value between 1 and 2 for both Gaussian and Poisson models.

This journal is © The Royal Society of Chemistry 2023
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Poisson model and could cause unexpected small signals above
the predicted detection threshold. False-positives can result
from the simultaneous registration of multiple particles (coin-
cidence) even if the individual particulate contaminants are
smaller than the detection threshold. The same kind of argu-
ment can be made for sp-ICP-MS if a sample contains a heter-
ogenous mixture of different NP sizes and number
concentrations.

It would be possible to reduce the false-positive rate by
choosing a higher detection threshold. However, this approach
is not suitable for DTs of 1 ms and below, where multiple data
points per signal event peak are obtained. The split-correction
event search would incorrectly reject data points with lower
intensities at the edges of the peak, as shown in panel B of
Fig. 7. This would underestimate the intensity sum of the peak
and the corresponding element mass of the event. Instead, in
this work, a secondary threshold is introduced as a gate lter. It
removes all initially identied events whose peak height is
below the gate threshold. If the peak height exceeds the gate
threshold, the start and end points of the peak as well as the
signal sum are not affected. As the main advantage, this
secondary lter stage can be ne-tuned to address the issue of
excessive false-positive events without changing the peak area
of the valid events. The peak height was selected as the criterion
for three reasons. First, the BG statistics predict the signal per
DT and not, e.g., the intensity per cell event. Analogously, the
number of data points per event, which strongly depends on the
DT, was discarded. Second, a peak height lter rewards better
signal-to-background ratios, providing a positive indicator for
method development. Third, a key result in sp- and sc-ICP-MS
analyses is the summed intensity of an event and the shape of
the distribution in a histogram. When the gate lter evaluates
Fig. 8 Panel (A): histograms show the event signal distribution after log10
false-positive events (blue) in C. reinhardtii sc-ICP-MS data compared
optimized outlier test and the “pessimistic” criterion. Triangular symbols (
data after applying the gate filter (black). Panel (B): the cell and NP conce
and the element mass per event from the signal, respectively. The diff
normalized to the value of the filtered data (N= 3). ForC. reinhardtii, the u
average) and overestimate the cell concentration up to 44% (22% on av

This journal is © The Royal Society of Chemistry 2023
a different parameter (height instead of area), it causes less
distortion of the event intensity distribution than, for example,
cutting out a narrower range in the histogram.

Since the cause and underlying distribution of the false-
positive events are not known, their frequency is difficult to
predict. Extrapolating the frequency from a blank sample would
require both a suitable cell suspension blank, and a long
sampling time to observe enough rare false-positive events.
Therefore, the preference was to establish an appropriate gate
threshold based on the BG distribution, which is estimated for
each sample using outlier tests. A rst approach was developed
by applying different empirical gate lter thresholds Ygate to an
event signal distribution that is sufficiently separated from the
BG to visualize the change, as shown in Fig. 8 and Fig. S2.† The
gate threshold Ygate was adjusted until most false-positive
signals in the tail of the BG distribution and below the core
distribution were removed. This procedure was tested with
a variety of samples of different cells, buffers, NPs, and BG
signal levels. It was observed that a suitable gate lter value can
be calculated by multiplying the gross detection limit YD with
a constant factor fg, as shown in eqn (7). In this work, a gate
factor of fg = 2 was found to perform well.

Further considerations support this approach. The false-
positive events are located in the top quantiles of the raw
data. Consequently, the distributions have longer tails than the
Gaussian or Poisson distribution predicts (Fig. 6). The gate
threshold Ygate can be placed in these top quantiles by calcu-
lating its value as a critical limit YC,awith an exceptionally low a-
value as shown in eqn (8). To evaluate the gate factor approach
with fg = 2, the ratio of YC,a and the gross detection limit YD was
analyzed. The ratio is referred to as rg and is expected to be of
similar magnitude as fg. According to eqn (9), rg was calculated
-transformation (DT = 1 ms). The gate filter (a = 10−10) identifies more
to AuNP. The detection thresholds (YD expressions) are based on the
<,=) indicate the mean of the entire data set (blue) and the remaining
ntration (cells mL−1, NP mL−1) is calculated from the number of events,
erence of each parameter before and after applying the gate filter is
nfiltered data would underestimate themass per cell up to 30% (17% on
erage). For AuNP, the effect was only 2% for both parameters.

J. Anal. At. Spectrom., 2023, 38, 2607–2618 | 2615
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as a function of mB for a going from 10−5 to 10−10 which
corresponds to 4.3s and 6.4s, respectively, in terms of a normal
distribution. Since the false-positive events are not part of the
model, these a-values should not be treated as strict signi-
cance levels, but as a computational tool. First, the Gaussian
model will be discussed. It requires sB to calculate both YD via
eqn (5) and YC,a which can be written as eqn (10). In order to
account for extra-Poisson variance and icker noise, sB was
calculated as a function of mB using a quadratic polynomial as
described elsewhere.10,36 To cover different values of mB, BG data
for varyingm/z but the same experimental setup were tted with
a quadratic polynomial whose constant offset was set to zero
and linear coefficient was set to one (sB

2 = mB + 0.031 × mB
2,

R2 = 0.9987). Since Gaussian models work best for mB > 10 cts
DT−1, the evaluation of rg was limited to this range.36Depending
on the values of a and mB, ratios between rg = 1.1 and rg = 1.5
were obtained (Fig. 7).

For the Poisson model, YC,a was calculated from mB using the
inverse CDF. For YD, eqn (6) was used. Ratios of up to rg= 1.8 were
obtained (Fig. 7). For large mB, the limit of rg tends towards one.
However, it is expected that a Gaussian model will be selected
based on the “pessimistic” criterion or the “mB > 10 cts DT−1”
criterion before this point is reached. For small mB, the ratio rg
takes a pronounced skewed step pattern because the
Poisson YC,a only takes integer values. The smallest meaningful
value of YC,a (YC,a = 1) sets the lower boundary for the ratio rg
at YD

−1 z 2.71−1 z 0.369. The summand 2.71 in the LD
approximation eqn (6) comes from the heteroskedasticity of the
Poisson distribution, and a constant of similar value results in
exact Poisson calculation as well. Thus, rg does not diverge when
mB approaches zero. In addition, it will take a value roughly
between rg = 1 and rg = 2 for the BG levels mB in most applica-
tions. In the 668 samples analyzed in this work, for example, mB
ranged from 2 × 10−3 cts DT−1 to 369.1 cts DT−1 and the corre-
sponding rg were between 1.3 and 1.8 for a = 10−10. The
respective distribution model was chosen via the “pessimistic”
criterion. In summary, these considerations suggest that the
assumption Ygate z fg × YD with fg = 2 is a plausible choice, as fg
should at least match the highest value of rg. Moreover, the
approach is easy to implement and customize via fg. The more
accurate alternative would be to calculate the inverse CDF for
each sample at a given a-value. In this case, the empirical SD of
the BG should replace the estimation of sB via the quadratic
polynomial for the Gaussian model.

Approach 1: Ygate z fg × YD (7)

Approach 2: Ygate = YC,a = mB + LC,a (8)

rg = YC,a × YD
−1 (9)

YC,a = mB + z1−a × sB (10)

Application

Finally, the effects of the gate lter on particle and cell number
concentration (PNC) and mass per particle and cell, respectively,
2616 | J. Anal. At. Spectrom., 2023, 38, 2607–2618
are discussed. PNC, and mass per particle and cell are important
target quantities in sp- and sc-ICP-MS. The PNC is calculated
from the number of events, and the mass from the event signal. A
change in these parameters propagates directly and linearly to
the PNC and mass. Therefore, a statement about the relative
effects of the gate lter can be made without a dedicated cali-
bration. For this purpose, the difference of the data sets before
and aer applying the gate lter was normalized to the ltered
value. In Fig. 8, the normalized change is shown with the corre-
sponding histograms for a gate lter a= 10−10. The false-positive
events have a lower mean intensity than the true events. In the
unltered data, the false-positives therefore lead to an underes-
timation of the mass and overestimate the PNC. The gate lter
counteracts this bias. For AuNP, the effect was small and on the
order of 2%. For C. reinhardtii samples, the gate lter increased
the estimated mass per cell by an average of 17% (up to 30% for
24Mg) and reduced the assumed PNC by an average of 22% (up to
44% for 24Mg). The degree of bias was greater for the cell samples
than for AuNP, but the general BG signal was also higher in these
samples. Therefore, it is not possible to conclude whether the
cause is specic to the cell suspensions. Nonetheless, these
examples emphasize the importance and benets of data-
dependent processing strategies. In addition, the cellular Mn
content was quantied using an external calibration for Mn and
the transport efficiency (TE). The TE was determined with AuNP
based on the particle frequency (TE = 0.40). For six technical
replicates, a mean Mn content of (2.6 ± 0.2) × 107 atoms per cell
was obtained which is in accordance with the literature reporting
a range of 2 × 107 to 4 × 107 atoms per cell for Mn in
C. reinhardtii.47

Conclusions

In this work, the advantages of a modular workow were
shown. The reliability of the widely-used iterative “fo × sB”

outlier test for Gaussian background (BG) models was
improved by monitoring the standard deviation (SD) of the
data set while performing the test. In short, if the obtained SD
is almost equal to zero, the chosen test factor fo is too small
and the number of outliers is overestimated (swamping
effect). If, however, the relative SD (RSD) is greater than 1.5,
the test fails to reject all outliers and fo needs to be reduced
(masking effect). Since it was found that the transition into
masking effects depends on the decimal place of the outlier
factor, non-integer step sizes can be chosen as increments to
solve this problem. These observations led to the conclusion
that the “fo × sB” outlier test has two critical tipping points
with respect to fo. When fo is close to these points, a small
variation of its value will have a strong and unpredictable
impact on the estimated BG parameters. Thus, it is crucial
that the factor for the outlier test fo should be chosen inde-
pendently of the factor for the “ft × sB” criterion that sets the
detection threshold, e.g., as “3sB” or “3.29sB”. For the Poisson
model, using the “well-known”-case detection limit LD dened
by Currie16 as an outlier test threshold was found to be ideal
since the constant summand of 2.71 in the expression
intrinsically supports the convergence. It was shown that
This journal is © The Royal Society of Chemistry 2023
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these measures enable a better comparability of the Gaussian
and Poisson model thresholds. Following this idea, a selection
criterion was established by the fact that the model with
a better t to the data yielded the higher detection threshold.
Importantly, the Gaussian approach naturally accounts for
extra-Poisson variance from icker noise. However, a Poisson
model is excellent for low count rates where a Gaussian model
suffers from the skewness and integer nature of the ICP-MS
count data, neither of which can be represented by the
model. Furthermore, a remaining excess of false-positive
events, observed even in blank samples, was discussed, and
addressed with a gate lter. Since increasing the detection
threshold comes with the risk of falsely excluding the edges of
a split-event peak, a secondary lter based on the peak height,
that does not alter the peak area, was chosen. Empirically, it
was established that doubling the gross detection limit YD
yields a sufficient gate lter threshold. Further investigation
concluded that critical values with exceptionally low false-
positive tolerances provide a more exible calculation of the
proposed gate lter. Further evidence that doubling YD indeed
leads to a lter threshold with the right order of magnitude
was obtained as well. An important conclusion was that single-
particle and single-cell ICP-MS data should be treated with
special care when approaching the detection limit. In
conclusion, a modular combination of these steps was able to
automatically process data of C. reinhardtii samples in a data-
dependent manner. On average, the event count used to esti-
mate the cell concentration was overestimated by 22%, while
the event signal, which is proportional to the element mass
per cell, was underestimated by 17% without a correction such
as the presented gate lter. Both ndings indicate that the
presented approach improves upon existing data evaluation
processes.
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