Elemental Scientific

Goldschmidt Paris 2017 Poster Note

Authors: Nicholas S. Lloyd¹, Grant Craig¹, M. Paul Field², Paul Watson², Leah E. Morgan³, Danielle Santiago Ramos⁴, John A. Higgins⁴

Measurement of Stable Isotope ⁴¹K/³⁹K Ratios by MC-ICP-MS

Poster Presented at Goldschmidt Paris 2017

Abstract

The measurement of the stable isotope ratio ⁴¹K/³⁹K by conventional MC-ICP-MS is challenging due to scattered ions from ⁴⁰Ar⁺ and interference by ⁴⁰Ar¹H⁺. TIMS and SIMS are not sufficiently precise to resolve the small spread of isotopic variation. The first measurements showing variation in this isotopic system were only recently made, using a Thermo ScientificTM NEPTUNE PlusTM MC-ICP-MS, operating in high-resolution mode and using cold wet plasma conditions and sample standard bracketing [1-4]. The typical repeatability of measurements is 0.08 – 0.12 ‰ (2 σ). An alternative approach has been to use collision cell MC-ICP-MS [5-8].

The potassium isotopic system has applications in terrestrial geochemistry, planetary science, and potentially for biomedical and agricultural research.

Two areas are explored to improve the precision using conventional MC-ICP-MS. The first is to enhance the resolving power of the mass spectrometer, since the mass difference between ⁴¹K⁺ and ⁴⁰Ar¹H⁺ is small (ca. 3 mu). The second is to improve the efficiency and the stability of the sample introduction. Experiments were conducted using a NEPTUNE Plus modified for higher mass resolution. This was coupled to an Elemental ScientificTM apex Ω^{TM} desolvating nebulizer system and an Elemental ScientificTM micro*FAST* MCTM syringe driven flow injection system. Data are reported for δ^{41} K precision using this setup.

Introduction

⁴¹K/³⁹K measurements are routinely made at Princeton University[™] with a standard Thermo Scientific NEPTUNE Plus MC-ICP-MS instrument operated in cold plasma (RF <600 W) at high resolution (ca. 10,000 RP). This configuration both minimizes ⁴⁰Ar⁺ and ⁴⁰Ar¹H⁺, and separates ⁴¹K⁺ from ⁴⁰Ar¹H⁺. δ⁴¹K values are obtained by sample standard bracketing with 0.17 ‰ (2σ) reproducibility (including sample chemistry).

In this poster note we explore ways to improve precision through:

- · Enhancing the resolution of the mass spectrometer.
- ⁴⁰Ar⁺ and ⁴⁰Ar¹H⁺ suppression.
- · Using standard hot dry plasma conditions.
- Rapid sample standard bracketing.

Table 1. Summary of operating parameters.

Nebulizer Uptake Rate	80 – 100 μL/min	
ICP RF Power	1200 W	
Cones	Ni (standard, 0.8H)	
Entrance Slit	16 µm	
Intermediate Slit	standard / high-resolution	
Data Acquisition	180 s	
Uptake/Wash Time (s)	free aspiration: 60 / 180 micro <i>FAST</i> MC: 15 / 45	

¹ Thermo Fisher Scientific, Hanna-Kunath-Str. 11, 28119 Bremen, Germany.

² Elemental Scientific, 7277 World Communications Drive, Omaha, Nebraska 68122, USA.

³ US Geological Survey (USGS), Kipling St & 6th St, Denver, CO 80226.

⁴ Princeton University, Princeton, NJ 08544.

Materials and Methods

A Thermo Scientific NEPTUNE Plus MC-ICP-MS was fitted with a 16 μ m entrance slit and a switchable intermediate aperture to provide 18,000 resolving power (5, 95% edge definition) at 1.5% transmission.

The Elemental Scientific apex Ω high-sensitivity sample introduction system is used to maximize analyte sensitivity and minimize ArH⁺ interferences. At typical N₂ flowrates (3 -7 mL/min) oxides and hydrides are reduced by two orders of magnitude. We investigate higher N₂ flow rates to further reduce ⁴⁰Ar¹H⁺ through reduction of Ar⁺ in the beam.

Solutions are introduced to the apex Ω using either a self-aspirating nebulizer (Elemental Scientific PFA-100 µFlow) or a dual-loop syringe driven injection system (Elemental Scientific micro*FAST* MC). At identical flowrates the micro*FAST* MC delivers a 20 – 30% sensitivity enhancement and very stable signal profiles, ideal for high-precision isotope ratios. Furthermore, dual alternating loop injections reduce the time between sample and standard measurements by 3 minutes (Table 1, Figure 2)

Potassium was purified using a Thermo ScientificTM DionexTM ICS-5000+ Capillary HPICTM system at Princeton University. Two materials were processed: NIST SRM 70b Potassium Feldspar and Bermuda seawater (BSW). The purified solutions were diluted to $1 - 2 \mu g/g$ concentration in 3 wt.% HNO₃ acid (Thermo ScientificTM OptimaTM Nitric Acid with Thermo ScientificTM BarnsteadTM DI water).

Table 2. Signal intensity, interference intensity and signal to interference ratio are tabulated as a function of increasing N₂ gas addition to the apex Ω on the NEPTUNE Plus. A flow rate of 25 ml/min N₂ provides the optimal balance between ⁴¹K, ⁴¹K/⁴⁰Ar¹H ratio and minimized tailing of ⁴⁰Ar¹H onto ⁴¹K (K = 1 µg/g). The K signal and ⁴¹K/⁴⁰Ar¹H ratio is comparable to that obtained under cold wet cold plasma conditions.

N _{2 (g)} (ml/min)	⁴⁰ Ar ¹ H (V)	⁴¹ K (V)	Ratio
10	1.73	1.33	0.77
20	0.49	0.57	1.16
30	0.07	0.31	4.43
40	0.038	0.22	5.79
50	0.039	0.194	4.97
60	0.034	0.174	5.12

Figure 1. Flow paths illustrating the micro*FAST* MC patented dual loop injection for rapid sample standard bracketing.

Results

Initial optimization of the apex Ω for the reduction of the ${}^{40}\text{Ar}{}^{1}\text{H}{}^{+}$ interferences on the K isotopes was performed in using the Thermo ScientificTM ELEMENT 2TM HR-ICP-MS. Two effects are apparent when increasing the N₂ gas addition: 1) hydride formation is reduced through the removal water at N₂ flow rates below 10 mL/min, 2) at higher N₂ flow rates (up to 60 mL/min) the Ar⁺ decreases as well as the ArH⁺ (Figure 3b). Similar experiments on the NEPTUNE Plus find optimal ${}^{41}\text{K}$ and ${}^{41}\text{K}/{}^{40}\text{Ar}{}^{1}\text{H}$ ratios at N₂ flow rates above 20 mL/min (Table 2).

Interference reduction combined with high mass resolution (18,000 RP) provides broad interference-free plateaus for data collection (Figure 4 and 5). The optimized configuration results in 0.06 ‰ SD (2 σ) external precision (Figure 6). Comparable precision, but higher throughput, is obtained for half the concentration (1 µg/g) when using the syringe injection and a resolution of 12,000 (Table 3).

Figure 2. High-resolution scans from the ELEMENT 2 of a 10 ng/g K solution illustrating relative intensity of K, Ar and ArH signal intensities with (a) wet plasma and (b) dry plasma apex Ω with excess N₂ addition (60 mL/min).

Table 3. Two different setups provide comparable external precision for 0.8 and 0.4 μ g sample amounts.

[K] µg/g	Nebulizer	Resolution	External Precision (SD, 2σ) δ ⁴¹ K _{BSW}
2	Self-aspirating	18,000	0.06
1	Syringe-driven	12,000	0.07

Figure 3. Mass scan showing the separation of ⁴¹K from ⁴⁰Ar¹H at a mass resolving power of 18,000 (5, 95% edge definition).

Figure 5. External precision (2SD) for δ^{41} K from 0.8 µg sample amounts, measured by sample standard bracketing.

Discussion

The potassium isotopic system is relatively unexplored for stable isotopic fractionation, with resolvable variation only recently demonstrated [1]. The isotopic system is attractive for both geochemistry and biochemistry applications.

The first measurements were made using a NEPTUNE Plus operating in high-resolution and using cold wet plasma.

Subsequent studies by Wang & Jacobsen [5,6] and by Li et al [7,8] used ${}^{1}\text{H}_{2}$ or ${}^{2}\text{H}_{2}$ gas in a collision cell MC-ICP-MS to suppress the ${}^{40}\text{Ar}$ and ${}^{40}\text{Ar}{}^{1}\text{H}$. $\bar{\delta}^{41}\text{K}$ isotope ratio precision using sample standard bracketing for the Isoprobe-P instrument is 0.2 – 0.3 ‰ SD (2 σ). Reported uncertainty can be reduced by taking the standard error of the mean of 8 or more replicate measurements (up to n=115) [5,6], assuming Poisson distributed variability between standards measurements.

We show data with an external precision for sample standard bracketing measurements of 0.06 ‰ SD (2 σ , individual SSB measurements), using 0.4 – 0.8 µg per measurement. The standard error of the mean for a quintuplicate analysis is 0.03 ‰ (n=5, 2 σ).

Accuracy of the measurements is within close agreement to values obtained by coauthors at Princeton University using the cold wet plasma technique (-0.68 \pm 0.17 ‰, n=33 with separate column chemistries). It should be noted that the sample purification chemistry contributes non-trivial uncertainty and limits the external reproducibility.

The high-resolution mode of the standard NEPTUNE Plus instrument is sufficient for the separation of $^{41}K^{+}$ from $^{40}Ar^{1}H^{+}$, and can be used to determine precise and accurate $\delta^{41}K$ values using cold wet plasma tuning. Critical to the measurements is the excellent stability of the NEPTUNE Plus with respect to peak-position and mass bias.

The setup explored in this poster offers:

- Enhanced mass resolution to broaden the interferencefree plateau and minimize tailing onto ⁴¹K⁺.
- ⁴⁰Ar⁺ and ⁴⁰Ar¹H⁺ suppression in hot plasma conditions.
- Efficient sample introduction to compensate for the loss of transmission from the enhanced mass resolution.
- Dual-loop loading to reduce the spacing of SSB measurements and increase sample throughput.
- Precise & accurate δ⁴¹K determination.

Conclusions

- Stable isotope ratio ⁴¹K/³⁹K can be precisely measured using conventional high-resolution MC-ICP-MS.
- The apex Ω provides sensitivity with interference suppression, enabling precise ⁴¹K/³⁹K measurements in hot plasma conditions.
- Rapid sample standard bracketing with the microFAST MC and apex Ω achieves optimal mass bias stability.
- 0.06 ‰ external repeatability (2σ) for δ⁴¹K can be achieved for 0.8 µg sample amounts.
- The Thermo Scientific NEPTUNE Plus is ideal for investigating isotopic fractionation processes of potassium and for application of stable potassium isotope ratio data in the field of geochemistry and biochemistry.

References

- 1. Morgan et al. (2012) AGU Fall Meeting.
- 2. Morgan et al. (2014) The Goldschmidt Conference.
- 3. Santiago Ramos & Higgins (2016) AGU Fall Meeting.
- Santiago Ramos, Dunlea & Higgins (2016) AGU Fall Meeting.
- Wang & Jacobsen (2016), Geochim. Cosmochim. Acta, 178, 223–232.
- 6. Wang & Jacobsen (2016), Nature, 538, 487–490.
- Li, Beard & Li (2016), J. Anal. At. Spectrom., 31, 1023-1029.
- Li (2017) Acta Geochim, DOI 10.1007/s11631-017-0167-1.

Acknowledgements

Tim Elliott, Jamie Lewis & Chris Coaths (University of Bristol) are acknowledged for parallel investigations of potassium isotope ratio measurements using the Thermo Scientific PROTEUS collision cell MC-ICP-MS.

Corresponding Author: nicholas.lloyd@thermofisher.com

UNIVERSITY

© Elemental Scientific | 7277 World Communications Drive | Omaha, NE 68122 Tel: 1-402-991-7800 | sales@icpms.com | www.icpms.com